-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_ignore_weather_info.py
79 lines (71 loc) · 3.29 KB
/
test_ignore_weather_info.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import unittest
import numpy as np
import tensorflow as tf
from dataset_functions import parse_dataset, x_y_split, ignore_weather_info
class TestIgnoreWeatherInfo(unittest.TestCase):
def test_correct_handling(self):
ds = parse_dataset('test/test.tfrecord', 'GZIP')
xy_split = ds.map(x_y_split)
xy_split_batch = xy_split.batch(4)
for x in xy_split_batch:
latent_vector_batch = x['latent_metadata']
(
input_platform_headings,
input_incidence_angles,
input_mission_ids,
target_platform_heading,
target_incidence_angle,
target_mission_id,
) = ignore_weather_info(latent_vector_batch)
for i, sample in enumerate(ds):
np.testing.assert_array_equal(
sample['input_image_platform_headings'].numpy(),
input_platform_headings[i].numpy(),
)
np.testing.assert_array_equal(
sample['input_image_incidence_angles'].numpy(),
input_incidence_angles[i].numpy(),
)
np.testing.assert_array_equal(
(sample['input_image_mission_ids'].numpy() == 'S1A'.encode('utf-8')).astype(np.float64),
input_mission_ids[i].numpy(),
)
np.testing.assert_equal(
sample['target_image_platform_heading'].numpy(),
target_platform_heading[i].numpy(),
)
np.testing.assert_equal(
sample['target_image_incidence_angle'].numpy(),
target_incidence_angle[i].numpy(),
)
np.testing.assert_equal(
float(sample['target_image_mission_id'].numpy() == 'S1A'.encode('utf-8')),
target_mission_id[i].numpy(),
)
target_data = tf.stack(
[
target_platform_heading,
target_incidence_angle,
target_mission_id,
],
axis=-1,
)
new_latent_vector = tf.concat(
[
input_platform_headings,
input_incidence_angles,
input_mission_ids,
target_data,
],
axis=-1
)
np.testing.assert_equal(new_latent_vector.shape[0], 4)
for v, sample in zip(new_latent_vector, ds):
np.testing.assert_array_equal(v[0:4].numpy(), sample['input_image_platform_headings'].numpy())
np.testing.assert_array_equal(v[4:8].numpy(), sample['input_image_incidence_angles'].numpy())
np.testing.assert_array_equal(v[8:12].numpy(), (sample['input_image_mission_ids'].numpy() == 'S1A'.encode('utf-8')).astype(np.float64))
np.testing.assert_equal(v[12].numpy(), sample['target_image_platform_heading'].numpy())
np.testing.assert_equal(v[13].numpy(), sample['target_image_incidence_angle'].numpy())
np.testing.assert_equal(v[14].numpy(), float(sample['target_image_mission_id'].numpy() == 'S1A'.encode('utf-8')))
if __name__ == '__main__':
unittest.main()