-
Notifications
You must be signed in to change notification settings - Fork 14
/
train.py
355 lines (307 loc) · 16.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import time
import json
import os
from six.moves import cPickle
import opts
import models
from dataloader import *
from train_utils import *
from eval_utils import eval_split
import misc.utils as utils
import gc
# try:
# import tensorboardX as tb
# except ImportError:
# print("tensorboardX is not installed")
# tb = None
# There seems to be cpu memory leak in lstm?
# https://github.com/pytorch/pytorch/issues/3665
torch.backends.cudnn.enabled = False
def add_summary_value(writer, key, value, iteration):
if writer:
writer.add_scalar(key, value, iteration)
def train(opt):
# tb_summary_writer = tb and tb.SummaryWriter(opt.checkpoint_path)
if not os.path.exists(opt.checkpoint_path):
os.mkdir(opt.checkpoint_path)
with open(os.path.join(opt.checkpoint_path,'config.json'),'w') as f:
json.dump(vars(opt),f)
# Load iterators
loader = DataLoader(opt)
dis_loader = DataLoader(opt)
opt.vocab_size = loader.vocab_size
opt.activity_size = loader.activity_size
opt.seq_length = loader.seq_length
opt.video = 1
# set up models
gen, dis = models.setup(opt)
gen_model = gen.cuda()
gen_model.train()
dis_model = dis.cuda()
dis_model.train()
gen_optimizer = utils.build_optimizer(gen_model.parameters(), opt)
dis_optimizer = utils.build_optimizer(dis_model.parameters(), opt)
# loss functions
crit = utils.LanguageModelCriterion()
gan_crit = nn.BCELoss().cuda()
# keep track of iteration
g_iter = 0
g_epoch = 0
d_iter = 0
d_epoch = 0
dis_flag = False
update_lr_flag = True
# Load from checkpoint path
infos = {'opt': opt}
histories = {}
infos['vocab'] = loader.get_vocab()
if opt.g_start_from is not None:
# Open old infos and check if models are compatible
with open(os.path.join(opt.g_start_from, 'infos.pkl')) as f:
infos = cPickle.load(f)
saved_model_opt = infos['opt']
need_be_same=["rnn_type", "rnn_size", "num_layers"]
for checkme in need_be_same:
assert vars(saved_model_opt)[checkme] == vars(opt)[checkme], "Command line argument and saved model disagree on '%s' " % checkme
# Load train/val histories
with open(os.path.join(opt.g_start_from, 'histories.pkl')) as f:
histories = cPickle.load(f)
# Load generator
g_start_epoch = opt.g_start_epoch
g_model_path = os.path.join(opt.g_start_from, "gen_%s.pth" % g_start_epoch)
g_optimizer_path = os.path.join(opt.g_start_from, "gen_optimizer_%s.pth" % g_start_epoch)
assert os.path.isfile(g_model_path) and os.path.isfile(g_optimizer_path)
gen_model.load_state_dict(torch.load(g_model_path))
gen_optimizer.load_state_dict(torch.load(g_optimizer_path))
if "latest" not in g_start_epoch and "best" != g_start_epoch:
g_epoch = int(g_start_epoch) + 1
g_iter = (g_epoch) * loader.split_size['train'] // opt.batch_size
else:
g_epoch = infos['g_epoch_' + g_start_epoch] + 1
g_iter = infos['g_iter_' + g_start_epoch]
print('loaded %s (epoch: %d iter: %d)' % (g_model_path, g_epoch, g_iter))
# Load discriminator
# assume that discriminator is loaded only if generator has been trained and saved in the same directory.
if opt.d_start_from is not None:
d_start_epoch = opt.d_start_epoch
d_model_path = os.path.join(opt.d_start_from, "dis_%s.pth" % d_start_epoch)
d_optimizer_path = os.path.join(opt.d_start_from, "dis_optimizer_%s.pth" % d_start_epoch)
assert os.path.isfile(d_model_path) and os.path.isfile(d_optimizer_path)
dis_model.load_state_dict(torch.load(d_model_path))
dis_optimizer.load_state_dict(torch.load(d_optimizer_path))
if "latest" not in d_start_epoch and "best" != d_start_epoch:
d_epoch = int(d_start_epoch) + 1
d_iter = (d_epoch) * loader.split_size['train'] // opt.batch_size
else:
d_epoch = infos['d_epoch_' + d_start_epoch] + 1
d_iter = infos['d_iter_' + d_start_epoch]
print('loaded %s (epoch: %d iter: %d)' % (d_model_path, d_epoch, d_iter))
infos['opt'] = opt
loader.iterators = infos.get('g_iterators', loader.iterators)
dis_loader.iterators = infos.get('d_iterators', loader.iterators)
# hybrid discriminator weight
v_weight = opt.visual_weight
l_weight = opt.lang_weight
p_weight = opt.par_weight
# misc
best_val_score = infos.get('g_best_score', None)
best_d_val_score = infos.get('d_best_score', None)
opt.activity_size = loader.activity_size
opt.seq_length = loader.seq_length
opt.video = 1
g_val_result_history = histories.get('g_val_result_history', {})
d_val_result_history = histories.get('d_val_result_history', {})
g_loss_history = histories.get('g_loss_history', {})
d_loss_history = histories.get('d_loss_history', {})
""" START TRAINING """
while True:
gc.collect()
# set every epoch
if update_lr_flag:
# Assign the learning rate for generator
if g_epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0:
frac = (g_epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every
decay_factor = opt.learning_rate_decay_rate ** frac
opt.current_lr = opt.learning_rate * decay_factor
else:
opt.current_lr = opt.learning_rate
utils.set_lr(gen_optimizer, opt.current_lr)
# Assign the learning rate for discriminator
if dis_flag and d_epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0:
frac = (d_epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every
decay_factor = opt.learning_rate_decay_rate ** frac
opt.current_lr = opt.learning_rate * decay_factor
else:
opt.current_lr = opt.learning_rate
utils.set_lr(dis_optimizer, opt.current_lr)
# Assign the scheduled sampling prob
if g_epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0:
frac = (g_epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every
opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob)
gen.ss_prob = opt.ss_prob
# Start using previous sentence as context for generator (default: 10 epoch)
if opt.g_context_epoch >= 0 and g_epoch >= opt.g_context_epoch:
gen_model.use_context()
# Switch to training discriminator
if opt.g_pre_nepoch >= 0 and g_epoch >= opt.g_pre_nepoch and not dis_flag:
print('Switching to pre-training discrimiator...')
loader.reset_iterator('train')
dis_loader.reset_iterator('train')
dis_flag = True
update_lr_flag = False
""" TRAIN GENERATOR """
if not dis_flag:
gen_model.train()
# train generator
start = time.time()
gen_loss, wrapped, sent_num = train_generator(gen_model, gen_optimizer, crit, loader)
end = time.time()
# Print Info
if g_iter % opt.losses_print_every == 0:
print("g_iter {} (g_epoch {}), gen_loss = {:.3f}, time/batch = {:.3f}, num_sent = {} {}" \
.format(g_iter, g_epoch, gen_loss, end - start,sum(sent_num),sent_num))
# Log Losses
if g_iter % opt.losses_log_every == 0:
g_loss = gen_loss
g_loss_history[g_iter] = {'g_loss': g_loss, 'g_epoch': g_epoch}
# Update the iteration
g_iter += 1
#########################
# Evaluate & Save Model #
#########################
if wrapped:
# evaluate model on dev set
eval_kwargs = {'split': 'val',
'dataset': opt.input_json,
'sample_max' : 1,
'language_eval': opt.language_eval,
'id' : opt.id,
'val_videos_use' : opt.val_videos_use,
'remove' : 1} # remove generated caption
# eval_kwargs.update(vars(opt))
val_loss, predictions, lang_stats, _, _ = eval_split(gen_model, crit, loader, eval_kwargs=eval_kwargs)
if opt.language_eval == 1:
current_score = lang_stats['METEOR']
else:
current_score = - val_loss
g_val_result_history[g_epoch] = {'g_loss': val_loss, 'g_score': current_score, 'lang_stats': lang_stats}
# Save the best generator model
if best_val_score is None or current_score > best_val_score:
best_val_score = current_score
checkpoint_path = os.path.join(opt.checkpoint_path, 'gen_best.pth')
torch.save(gen_optimizer.state_dict(), os.path.join(opt.checkpoint_path, 'gen_optimizer_best.pth'))
infos['g_epoch_best'] = g_epoch
infos['g_best_score'] = best_val_score
torch.save(gen_model.state_dict(), checkpoint_path)
print("best generator saved to {}".format(checkpoint_path))
# Dump miscalleous informations and save
infos['g_epoch_latest'] = g_epoch
infos['g_iter_latest'] = g_iter
infos['g_iterators'] = loader.iterators
histories['g_val_result_history'] = g_val_result_history
histories['g_loss_history'] = g_loss_history
with open(os.path.join(opt.checkpoint_path, 'infos.pkl'), 'wb') as f:
cPickle.dump(infos, f)
with open(os.path.join(opt.checkpoint_path, 'histories.pkl'), 'wb') as f:
cPickle.dump(histories, f)
# save the latest model
if opt.save_checkpoint_every > 0 and g_epoch % opt.save_checkpoint_every == 0:
torch.save(gen.state_dict(), os.path.join(opt.checkpoint_path, 'gen_%d.pth'% g_epoch))
torch.save(gen.state_dict(), os.path.join(opt.checkpoint_path, 'gen_latest.pth'))
torch.save(gen_optimizer.state_dict(), os.path.join(opt.checkpoint_path, 'gen_optimizer_%d.pth'% g_epoch))
torch.save(gen_optimizer.state_dict(), os.path.join(opt.checkpoint_path, 'gen_optimizer_latest.pth'))
print("model saved to {} at epoch {}".format(opt.checkpoint_path, g_epoch))
# update epoch and lr
g_epoch += 1
update_lr_flag = True
""" TRAIN DISCRIMINATOR """
if dis_flag:
dis_model.train()
gen_model.eval()
# choose negatives to use for visual discriminator
if d_epoch >= 2 and d_iter % 2 == 0:
dis_loader.set_negatives('hard')
else:
dis_loader.set_negatives('random')
# set temperature
if opt.dynamic_temperature:
temp_range = [1.0, 0.8, 0.6, 0.4, 0.2]
temperature = temp_range[d_iter % (len(temp_range))]
else:
temperature = opt.train_temperature
# train discriminator
start = time.time()
losses, accuracies, wrapped,sent_num = train_discriminator(dis_model,gen_model,dis_optimizer,gan_crit,dis_loader,
temperature=temperature,gen_weight=opt.d_gen_weight,mm_weight=opt.d_mm_weight,
use_vis=(v_weight >0), use_lang=(l_weight > 0), use_pair=(p_weight>0))
dis_v_loss, dis_l_loss, dis_p_loss = losses
end = time.time()
# Print Info
if d_iter % opt.losses_print_every == 0:
print("d_iter {} (d_epoch {}), v_loss = {:.8f}, l_loss = {:.8f}, p_loss={:.8f}, time/batch = {:.3f}, num_sent = {} {}" \
.format(d_iter, d_epoch, dis_v_loss, dis_l_loss, dis_p_loss, end - start,sum(sent_num),sent_num))
print("accuracies:", accuracies)
# Log Losses
if d_iter % opt.losses_log_every == 0:
d_loss_history[d_iter] = {'dis_v_loss': dis_v_loss, 'dis_l_loss': dis_l_loss, 'dis_p_loss': dis_p_loss, 'd_epoch': d_epoch}
for type, accuracy in accuracies.items():
d_loss_history[d_iter][type] = accuracy
# Update the iteration
d_iter += 1
#########################
# Evaluate & Save Model #
#########################
if wrapped:
# evaluate model on dev set
eval_kwargs = {'split': 'val',
'dataset': opt.input_json,
'sample_max' : (d_epoch+1) % 5 != 0,
'num_samples' : 30,
'temperature' : 0.2,
'language_eval' : opt.language_eval,
'id' : opt.id,
'val_videos_use': opt.val_videos_use,
'remove' : 1}
_ , predictions, lang_stats, val_result, _ = eval_split(gen_model, crit, loader, dis_model, gan_crit,
eval_kwargs=eval_kwargs)
d_val_result_history[d_epoch] = val_result
# save the best discriminator
current_d_score = v_weight * (val_result['v_gen_accuracy'] + val_result['v_mm_accuracy']) + \
l_weight * (val_result['l_gen_accuracy'] + val_result['l_neg_accuracy']) + \
p_weight * (val_result['p_gen_accuracy'] + val_result['p_neg_accuracy'])
if best_d_val_score is None or current_d_score > best_d_val_score:
best_d_val_score = current_d_score
checkpoint_path = os.path.join(opt.checkpoint_path, 'dis_best.pth')
torch.save(dis_model.state_dict(),checkpoint_path)
torch.save(dis_optimizer.state_dict(), os.path.join(opt.checkpoint_path, 'dis_optimizer_best.pth'))
infos['d_epoch_best'] = d_epoch
infos['d_iter_best'] = d_iter
infos['d_best_score'] = best_d_val_score
print("best discriminator saved to {}".format(checkpoint_path))
# Dump miscalleous informations
infos['d_epoch_latest'] = d_epoch
infos['d_iter_latest'] = d_iter
infos['d_iterators'] = dis_loader.iterators
histories['d_loss_history'] = d_loss_history
histories['d_val_result_history'] = d_val_result_history
with open(os.path.join(opt.checkpoint_path, 'infos.pkl'), 'wb') as f:
cPickle.dump(infos, f)
with open(os.path.join(opt.checkpoint_path, 'histories.pkl'), 'wb') as f:
cPickle.dump(histories, f)
# save model
if opt.save_checkpoint_every > 0 and d_epoch % opt.save_checkpoint_every == 0:
torch.save(dis.state_dict(), os.path.join(opt.checkpoint_path, 'dis_%d.pth'% d_epoch))
torch.save(dis.state_dict(), os.path.join(opt.checkpoint_path, 'dis_latest.pth'))
torch.save(dis_optimizer.state_dict(), os.path.join(opt.checkpoint_path, 'dis_optimizer_%d.pth'% d_epoch))
torch.save(dis_optimizer.state_dict(), os.path.join(opt.checkpoint_path, 'dis_optimizer_latest.pth'))
# update epoch and lr
d_epoch += 1
update_lr_flag = True
if __name__ == '__main__':
opt = opts.parse_opt()
train(opt)