Skip to content

Latest commit

 

History

History
47 lines (34 loc) · 1.88 KB

README.md

File metadata and controls

47 lines (34 loc) · 1.88 KB

SimpleNet: A Simple Network for Image Anomaly Detection and Localization

Note

  • The default dataset is metal_nut from MVTec

Installation

conda create -n PyTorch python=3.8
conda activate PyTorch
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch-lts
pip install opencv-python==4.5.5.64
pip install scikit-learn
pip install scipy
pip install tqdm

Train

  • Configure your dataset path in main.py for training
  • Download pretrained weights and place it under weights folder, see Pretrained weights
  • Run python main.py --train for training

Test

  • Configure your dataset path in main.py for testing
  • Run python main.py --test for testing

Results

Backbone Epochs F1 (%) Accuracy (%) AUROC (%) Pretrained weights
ResNet18 150 97.4 95.7 99.1 model
ReNet34 150 97.4 95.7 99.3 model
ReNet50 150 100 100 100 model
ReNet101 150 - - - model
ReNet152 150 - - - model

Alt Text Alt Text Alt Text Alt Text

Reference