-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
1171 lines (758 loc) · 40.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import os
import json
from models import *
from utils import *
from attack_function import *
from datasets import get_dataset
from robustbench import benchmark
import sys
import time
import numpy as np
from datetime import datetime
parser = argparse.ArgumentParser(description='PeerAiD adversarial distillation')
parser.add_argument('--p_type', help='the peer model type.')
parser.add_argument('--s_type', help='the student model type.')
parser.add_argument('--kd', action='store_true', help='whether to use adversarial knowledge distillation.')
parser.add_argument('--k_train', type = int, default=10, help='pgd k step in training')
parser.add_argument('--exp_id', type = int, default=0, help='experiment id.')
parser.add_argument('--temperature', type = float, default=6, help='temperature of the distillation term in the loss of the student model.')
parser.add_argument('--s_attack_type', type=str, default='pgd', help='adversarial training method.')
parser.add_argument('--config_path', type=str, help='json path which contains the hyperparameter config.')
parser.add_argument('--start_epoch', type = int, default=0, help='The epoch at which training epoch starts.')
parser.add_argument('--total_epoch', type = int, default=300, help='total training epoch.')
parser.add_argument('--lr_student', type = float, default=0.1, help='learning rate of the student model.')
parser.add_argument('--lr_peer', type = float, default=0.1, help='learning rate of the peer model.')
parser.add_argument('--batch_size', type = int, default=128, help='batch size.')
parser.add_argument('--weight_decay', type = float, default=0.0002, help='weight decay.')
parser.add_argument('--AA', action='store_true', help='whether to perform autoattack.')
parser.add_argument('--fgsm_eval', action='store_true', help='whether to test fgsm attack after finishing training.')
parser.add_argument('--pgd_eval', action='store_true', help='whether to test pgd attack after finishing training.')
parser.add_argument('--n_examples', type = int, default=10000, help='the number of samples you will test with AutoAttack.')
parser.add_argument('--dataset', type=str, default='cifar10', help='the name of the training dataset. CIFAR-10, CIFAR-100 and TinyImageNet are available.')
parser.add_argument('--data_path', type=str, default='./data', help='dataset path.')
parser.add_argument('--swa_s', action='store_true', help='whether to use stochastic weight averaging with the student model')
parser.add_argument('--swa_s_start', type = int, default=99, help='the epoch when the stochastic weight averaging of the student model starts')
parser.add_argument('--save_path', type=str, default='./checkpoint/', help='the path in which checkpoint is saved.')
parser.add_argument('--save_interval', type = int, default=30, help='the interval at which checkpoint is saved.')
parser.add_argument('--json_path', type=str, default='./json_logs/', help='json path which will be used to save the training result in the json format.')
parser.add_argument('--debug_mode', action='store_true', help='this mode only uses two batches.')
parser.add_argument('--resume', action='store_true', help='whether to resume your training from checkpoints.')
parser.add_argument('--resume_s_path', type=str, help='the path in which checkpoint of the student model exists.')
parser.add_argument('--resume_t_path', type=str, help='the path in which checkpoint of the peer model exists.')
parser.add_argument('--resume_s_swa_path', type=str, help='the path in which checkpoint of the SWA student network exists.')
parser.add_argument('--re_kd_temperature', type = float, default=1, help='the temperature parameter of the distillation term in the loss of the peer model.')
parser.add_argument('--lamb1', type = float, default=1, help='lambda1 hyperparameter in the loss of the student model.')
parser.add_argument('--lamb2', type = float, default=1, help='lambda2 hyperparameter in the loss of the student model.')
parser.add_argument('--lamb3', type = float, default=1, help='lambda3 hyperparameter in the loss of the student model.')
parser.add_argument('--gamma1', type = float, default=1, help='gamma1 hyperparameter in the loss of the peer model.')
parser.add_argument('--gamma2', type = float, default=1, help='gamma2 hyperparameter in the loss of the peer model.')
args=parser.parse_args()
print(' '.join(f'{k}={v}' for k, v in vars(args).items()))
print("Start time : " , datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
if args.config_path is not None:
with open(args.config_path, "r") as config_file:
print("Config file opened!")
config_json = json.load(config_file)
print(config_json)
args.lr_student = config_json['lr_student']
args.lr_peer = config_json['lr_peer']
args.total_epoch = config_json['epochs']
lr_decay_epochs_peer = []
lr_decay_epochs_student = []
for i in config_json['lr_decay_epochs_peer']:
lr_decay_epochs_peer.append(i)
for i in config_json['lr_decay_epochs_student']:
lr_decay_epochs_student.append(i)
args.batch_size = config_json['batch_size']
args.weight_decay = config_json['weight_decay']
args.lr_decay_epochs_peer = lr_decay_epochs_peer
args.lr_decay_epochs_student = lr_decay_epochs_student
print("lr decay epochs of the peer model : " ,args.lr_decay_epochs_peer)
print("lr decay epochs of the student model : " ,args.lr_decay_epochs_student)
if args.swa_s:
args.swa_s_start = args.lr_decay_epochs_student[0]
if args.debug_mode:
args.swa_s_start = 0
print("SWA student starts at ", args.swa_s_start)
print(' '.join(f'{k}={v}' for k, v in vars(args).items()))
if not os.path.isdir(args.save_path):
os.mkdir(args.save_path)
print("New directory created ! : ", args.save_path)
if args.debug_mode:
args.n_examples = 2
args.total_epoch = 4
learning_rate_student = args.lr_student
learning_rate_peer = args.lr_peer
epsilon = 8/255
k_train = args.k_train
alpha = 2/255
file_name = 'PeerAiD'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Device : ", device)
kwargs = {'pin_memory': True, 'num_workers': 8}
train_dataset, test_dataset, image_size, num_classes = get_dataset(dataset=args.dataset, data_path=args.data_path)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, **kwargs)
def save_checkpoint(state, filename='checkpoint.pth.tar'):
saving_filename = args.save_path + filename
torch.save(state, saving_filename)
if args.kd:
peer_net = model_builder(args.p_type, num_classes=num_classes, dataset=args.dataset)
peer_net = peer_net.to(device)
student_net = model_builder(args.s_type, num_classes=num_classes, dataset=args.dataset)
student_net = student_net.to(device)
swa_n_student = 0
if args.swa_s:
student_swa_net = model_builder(args.s_type, num_classes=num_classes, dataset=args.dataset)
student_swa_net = student_swa_net.to(device)
else:
swa_n_student = 0
student_net = model_builder(args.s_type, num_classes=num_classes, dataset=args.dataset)
student_net = student_net.to(device)
cudnn.benchmark = True
if args.kd:
adversary_peer = LinfPGDAttack(peer_net, epsilon, alpha)
adversary_student = LinfPGDAttack(student_net, epsilon, alpha)
adversary_student_training = LinfPeerAttack(student_net, epsilon, alpha)
if args.swa_s:
adversary_swa_student = LinfPGDAttack(student_swa_net, epsilon, alpha)
else:
adversary_student = LinfPGDAttack(student_net, epsilon, alpha)
adversary_student_training = LinfPGDAttack(student_net, epsilon, alpha)
def test_resume(net):
net.eval()
benign_correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device)
total += targets.size(0)
outputs = net(inputs)
_, predicted = outputs.max(1)
benign_correct += predicted.eq(targets).sum().item()
print('\nTotal natural test accuarcy of the resumed model:', 100. * benign_correct / total)
if args.kd:
peer_criterion = nn.CrossEntropyLoss()
student_criterion = nn.CrossEntropyLoss()
peer_optimizer = optim.SGD(peer_net.parameters(), lr=learning_rate_peer, momentum=0.9, weight_decay=args.weight_decay)
student_optimizer = optim.SGD(student_net.parameters(), lr=learning_rate_student, momentum=0.9, weight_decay=args.weight_decay)
if args.resume:
if os.path.isfile(args.resume_s_path):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume_s_path)
student_net.load_state_dict(checkpoint['state_dict'])
student_optimizer.load_state_dict(checkpoint['optimizer'])
print("The checkpoint of student net successfully loaded.")
test_resume(student_net)
checkpoint = torch.load(args.resume_t_path)
peer_net.load_state_dict(checkpoint['state_dict'])
peer_optimizer.load_state_dict(checkpoint['optimizer'])
print("The checkpoint of peer net successfully loaded.")
test_resume(peer_net)
if args.swa_s and (args.resume_s_swa_path is not None):
checkpoint = torch.load(args.resume_s_swa_path)
student_swa_net.load_state_dict(checkpoint['state_dict'])
print("The checkpoint of SWA student net successfully loaded.")
test_resume(student_swa_net)
else:
student_criterion = nn.CrossEntropyLoss()
student_optimizer = optim.SGD(student_net.parameters(), lr=learning_rate_student, momentum=0.9, weight_decay=args.weight_decay)
if args.resume:
if os.path.isfile(args.resume_s_path):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume_s_path)
student_net.load_state_dict(checkpoint['state_dict'])
student_optimizer.load_state_dict(checkpoint['optimizer'])
print("The checkpoint of student net successfully loaded.")
test_resume(student_net)
def train(epoch):
if args.swa_s:
global swa_n_student
print('\n[ Train epoch: %d ]' % epoch)
student_net.train()
student_train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(train_loader):
if args.debug_mode:
if batch_idx == 2 :
break
inputs, targets = inputs.to(device), targets.to(device)
student_optimizer.zero_grad()
if args.s_attack_type == 'natural_training':
adv_outputs = student_net(inputs)
else:
adv = adversary_student_training.perturb(inputs, targets, k_train)
student_net.train()
adv_outputs = student_net(adv)
loss = student_criterion(adv_outputs, targets)
loss.backward()
student_optimizer.step()
student_train_loss += loss.item()
_, predicted = adv_outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if batch_idx == 20 :
print('\nCurrent batch:', str(batch_idx))
print('Current adversarial train accuracy:', str(predicted.eq(targets).sum().item()*100 / targets.size(0)))
print('Current adversarial train loss:', loss.item())
elif batch_idx % 10 == 0 :
print('\nCurrent batch:', str(batch_idx))
print('\nTotal adversarial train accuarcy:', 100. * correct / total)
print('Total adversarial train loss:', student_train_loss)
def train_kd(epoch):
if args.swa_s:
global swa_n_student
print('\n[ Train epoch: %d ]' % epoch)
peer_net.train()
student_net.train()
T = args.temperature
peer_train_loss = 0
student_train_loss = 0
correct = 0
total = 0
correct_student = 0
total_student = 0
for batch_idx, (inputs, targets) in enumerate(train_loader):
if args.debug_mode:
if batch_idx == 2 :
break
inputs, targets = inputs.to(device), targets.to(device)
student_optimizer.zero_grad()
peer_optimizer.zero_grad()
peer_net.eval()
with torch.no_grad():
peer_logits = peer_net(inputs)
peer_net.train()
adv = adversary_student_training.perturb(peer_logits, inputs, targets, k_train)
student_net.train()
adv.detach_()
adv_outputs = peer_net(adv)
student_logit_target = student_net(adv)
loss_peer = peer_criterion(adv_outputs, targets) * args.gamma1 + nn.KLDivLoss()(F.log_softmax(adv_outputs/args.re_kd_temperature, dim=1), F.softmax(student_logit_target/args.re_kd_temperature, dim=1)) * args.gamma2 * args.re_kd_temperature * args.re_kd_temperature
peer_train_loss += loss_peer.item()
_, predicted = adv_outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
peer_outputs = adv_outputs.clone()
peer_outputs.detach_()
adv.detach_()
student_outputs = student_net(adv)
_, predicted_student = student_outputs.max(1)
total_student += targets.size(0)
pred_result = predicted_student.eq(targets)
correct_student += pred_result.sum().item()
inputs.detach_()
logit_nat = student_net(inputs)
student_net.train()
loss_student = F.cross_entropy(student_outputs, targets) * (args.lamb1) + \
nn.KLDivLoss()(F.log_softmax(student_outputs/T, dim=1),
F.softmax(peer_outputs/T, dim=1)) * (args.lamb2 * T * T) + \
nn.KLDivLoss()(F.log_softmax(student_outputs/T, dim=1),
F.softmax(logit_nat/T, dim=1)) * (args.lamb3 * T * T)
loss_total = loss_peer + loss_student
loss_total.backward()
peer_optimizer.step()
student_optimizer.step()
student_train_loss += loss_student.item()
if batch_idx % 20 == 0:
print('\nCurrent batch:', str(batch_idx))
if batch_idx == 20:
print('Current adversarial peer train accuracy:', str(predicted.eq(targets).sum().item()*100 / targets.size(0)))
print('Current adversarial peer train loss:', loss_peer.item())
print('Current adversarial student train accuracy:', str(predicted_student.eq(targets).sum().item()*100 / targets.size(0)))
print('Current adversarial student train loss:', loss_student.item())
print('\nTotal adversarial peer train accuarcy:', 100. * correct / total)
print('Total adversarial peer train loss:', peer_train_loss)
print('Total adversarial student train loss:', student_train_loss)
print('Total adversarial student train accuarcy:', 100. * correct_student / total_student)
if args.swa_s and epoch >= args.swa_s_start:
# SWA student
moving_average(student_swa_net, student_net, 1.0/(swa_n_student + 1))
swa_n_student += 1
bn_update(train_loader, student_swa_net)
def test(epoch):
global best_student_natural_acc
global best_student_robust_acc
global best_epoch
global best_student_swa_natural_acc
global best_student_swa_robust_acc
global best_student_swa_epoch
global best_natural_epoch
global at_natural_best_natural_acc
global at_natural_best_robust_acc
global best_swa_natural_epoch
global at_natural_best_swa_natural_acc
global at_natural_best_swa_robust_acc
if args.swa_s:
global swa_n_student
print('\n[ Test epoch: %d ]' % epoch)
student_net.eval()
student_benign_loss = 0
student_adv_loss = 0
student_benign_correct = 0
student_adv_correct = 0
student_total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
if args.debug_mode:
if batch_idx == 2 :
break
inputs, targets = inputs.to(device), targets.to(device)
student_total += targets.size(0)
outputs = student_net(inputs)
loss = student_criterion(outputs, targets)
student_benign_loss += loss.item()
_, predicted = outputs.max(1)
student_benign_correct += predicted.eq(targets).sum().item()
adv = adversary_student.perturb(inputs, targets, 10)
adv_outputs = student_net(adv)
loss = student_criterion(adv_outputs, targets)
student_adv_loss += loss.item()
_, predicted = adv_outputs.max(1)
student_adv_correct += predicted.eq(targets).sum().item()
student_robust_acc = 100. * student_adv_correct / student_total
student_natural_acc = 100. * student_benign_correct / student_total
print('\nTotal test clean accuarcy of the student model :', 100. * student_benign_correct / student_total)
print('Total adversarial test Accuarcy of the student model against PGD-10 :', 100. * student_adv_correct / student_total)
print('Total test clean loss of the student model:', student_benign_loss)
print('Total adversarial test loss of the student model:', student_adv_loss)
if (student_robust_acc > best_student_robust_acc) :
best_epoch = epoch
best_student_natural_acc = student_natural_acc
best_student_robust_acc = student_robust_acc
print('Best robust acc achieved!')
net_state_dict = student_net.state_dict()
save_checkpoint({
'epoch':epoch,
'best_epoch' : best_epoch,
'exp_id': args.exp_id,
'state_dict': net_state_dict,
'student_best_natural_acc' : best_student_natural_acc,
'student_best_robust_acc': best_student_robust_acc,
'optimizer' : student_optimizer.state_dict(),
'best_student_swa_natural_acc' : best_student_swa_natural_acc,
'best_student_swa_robust_acc' : best_student_swa_robust_acc,
'best_student_swa_epoch' : best_student_swa_epoch,
'swa_n_student':swa_n_student
}, filename=str(args.exp_id)+'_baseline_' + file_name + '_student_best'+'.pth.tar')
print('Model saved!')
if (args.s_attack_type == 'natural_training') and (student_natural_acc > at_natural_best_natural_acc) :
best_natural_epoch = epoch
at_natural_best_natural_acc = student_natural_acc
at_natural_best_robust_acc = student_robust_acc
print("Best natural acc achieved!")
net_state_dict = student_net.state_dict()
save_checkpoint({
'epoch':epoch,
'best_natural_epoch' : best_natural_epoch,
'at_natural_best_natural_acc' : at_natural_best_natural_acc,
'at_natural_best_robust_acc' : at_natural_best_robust_acc,
'best_epoch' : best_epoch,
'exp_id': args.exp_id,
'state_dict': net_state_dict,
'student_best_natural_acc' : best_student_natural_acc,
'student_best_robust_acc': best_student_robust_acc,
'optimizer' : student_optimizer.state_dict(),
'best_student_swa_natural_acc' : best_student_swa_natural_acc,
'best_student_swa_robust_acc' : best_student_swa_robust_acc,
'best_student_swa_epoch' : best_student_swa_epoch,
'swa_n_student':swa_n_student
}, filename=str(args.exp_id)+'_baseline_' + file_name + '_student_natural_best'+'.pth.tar')
print("With best natural acc, the model saved!")
if (epoch == (args.total_epoch - 1)) :
net_state_dict = student_net.state_dict()
save_checkpoint({
'epoch':epoch,
'best_epoch' : best_epoch,
'exp_id': args.exp_id,
'state_dict': net_state_dict,
'student_best_natural_acc' : best_student_natural_acc,
'student_best_robust_acc': best_student_robust_acc,
'optimizer' : student_optimizer.state_dict(),
'best_student_swa_natural_acc' : best_student_swa_natural_acc,
'best_student_swa_robust_acc' : best_student_swa_robust_acc,
'best_student_swa_epoch' : best_student_swa_epoch,
'swa_n_student':swa_n_student
}, filename=str(args.exp_id)+'_baseline_' + file_name + '_last_epoch'+'.pth.tar')
print('At last epoch, Model Saved!')
def test_kd(epoch):
global best_epoch
global best_student_natural_acc
global best_student_robust_acc
global best_student_swa_natural_acc
global best_student_swa_robust_acc
global best_student_swa_epoch
if args.swa_s:
global swa_n_student
print('\n[ Test epoch: %d ]' % epoch)
student_net.eval()
peer_net.eval()
student_benign_loss = 0
student_adv_loss = 0
student_benign_correct = 0
student_adv_correct = 0
student_total = 0
if args.swa_s and epoch >= args.swa_s_start:
student_swa_net.eval()
student_swa_benign_loss = 0
student_swa_adv_loss = 0
student_swa_benign_correct = 0
student_swa_adv_correct = 0
student_swa_total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
if args.debug_mode :
if batch_idx == 2 :
break
inputs, targets = inputs.to(device), targets.to(device)
student_total += targets.size(0)
outputs = student_net(inputs)
loss = student_criterion(outputs, targets)
student_benign_loss += loss.item()
_, predicted = outputs.max(1)
student_benign_correct += predicted.eq(targets).sum().item()
adv = adversary_student.perturb(inputs, targets, 10)
adv_outputs = student_net(adv)
loss = student_criterion(adv_outputs, targets)
student_adv_loss += loss.item()
_, predicted = adv_outputs.max(1)
student_adv_correct += predicted.eq(targets).sum().item()
student_robust_acc = 100. * student_adv_correct / student_total
student_natural_acc = 100. * student_benign_correct / student_total
print('\nTotal test clean accuarcy of the student model :', student_natural_acc)
print('Total adversarial test Accuarcy of the student model against PGD-10 :', student_robust_acc)
print('Total test clean loss of the student model:', student_benign_loss)
print('Total adversarial test loss of the student model:', student_adv_loss)
if (student_robust_acc > best_student_robust_acc) :
best_epoch = epoch
best_student_natural_acc = student_natural_acc
best_student_robust_acc = student_robust_acc
print('Best student robust acc achieved !')
net_state_dict = student_net.state_dict()
save_checkpoint({
'epoch':epoch,
'best_epoch' : best_epoch,
'exp_id': args.exp_id,
'state_dict': net_state_dict,
'student_best_natural_acc' : best_student_natural_acc,
'student_best_robust_acc': best_student_robust_acc,
'optimizer' : student_optimizer.state_dict(),
'best_student_swa_natural_acc' : best_student_swa_natural_acc,
'best_student_swa_robust_acc' : best_student_swa_robust_acc,
'best_student_swa_epoch' : best_student_swa_epoch,
'swa_n_student':swa_n_student
}, filename='student_net_' + file_name+ '_student_best_' + str(args.exp_id)+'.pth.tar')
print('Student Model Saved!')
if (epoch == (args.total_epoch - 1)) :
net_state_dict = student_net.state_dict()
save_checkpoint({
'epoch':epoch,
'best_epoch' : best_epoch,
'exp_id': args.exp_id,
'state_dict': net_state_dict,
'student_best_natural_acc' : best_student_natural_acc,
'student_best_robust_acc': best_student_robust_acc,
'optimizer' : student_optimizer.state_dict(),
'best_student_swa_natural_acc' : best_student_swa_natural_acc,
'best_student_swa_robust_acc' : best_student_swa_robust_acc,
'best_student_swa_epoch' : best_student_swa_epoch,
'swa_n_student':swa_n_student
}, filename='student_net_' + file_name+ '_last_epoch_' + str(args.exp_id)+'.pth.tar')
print('At last epoch, Student Model Saved!')
if args.swa_s and epoch >= args.swa_s_start:
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
if args.debug_mode :
if batch_idx == 2 :
break
inputs, targets = inputs.to(device), targets.to(device)
student_swa_total += targets.size(0)
outputs = student_swa_net(inputs)
loss = student_criterion(outputs, targets)
student_swa_benign_loss += loss.item()
_, predicted = outputs.max(1)
student_swa_benign_correct += predicted.eq(targets).sum().item()
if batch_idx % 10 == 0:
print('\nCurrent batch:', str(batch_idx))
adv = adversary_swa_student.perturb(inputs, targets, 10)
adv_outputs = student_swa_net(adv)
loss = student_criterion(adv_outputs, targets)
student_swa_adv_loss += loss.item()
_, predicted = adv_outputs.max(1)
student_swa_adv_correct += predicted.eq(targets).sum().item()
if args.swa_s and epoch >= args.swa_s_start:
student_swa_robust_acc = 100. * student_swa_adv_correct / student_swa_total
student_swa_natural_acc = 100. * student_swa_benign_correct / student_swa_total
print('\nTotal test clean accuarcy of the SWA student model :', student_swa_natural_acc)
print('Total adversarial test Accuarcy of the SWA student model against PGD-10 :', student_swa_robust_acc)
print('Total test clean loss of the SWA student model:', student_swa_benign_loss)
print('Total adversarial test loss of the SWA student model:', student_swa_adv_loss)
if args.swa_s and epoch >= args.swa_s_start and (student_swa_robust_acc > best_student_swa_robust_acc) :
best_student_swa_epoch = epoch
best_student_swa_natural_acc = student_swa_natural_acc
best_student_swa_robust_acc = student_swa_robust_acc
print('Best SWA student robust acc achieved !')
net_state_dict = student_swa_net.state_dict()
save_checkpoint({
'epoch':epoch,
'best_epoch' : best_epoch,
'exp_id': args.exp_id,
'state_dict': net_state_dict,
'student_best_natural_acc' : best_student_natural_acc,
'student_best_robust_acc': best_student_robust_acc,
'best_student_swa_natural_acc' : best_student_swa_natural_acc,
'best_student_swa_robust_acc' : best_student_swa_robust_acc,
'best_student_swa_epoch' : best_student_swa_epoch,
'swa_n_student':swa_n_student
}, filename='swa_student_net_' + file_name+ '_student_swa_best_' + str(args.exp_id)+'.pth.tar')
print('Best SWA Student Model Saved!')
if args.swa_s and (epoch >= args.swa_s_start) and (epoch == args.total_epoch - 1) :
net_state_dict = student_swa_net.state_dict()
save_checkpoint({
'epoch':epoch,
'best_epoch' : best_epoch,
'exp_id': args.exp_id,
'state_dict': net_state_dict,
'student_best_natural_acc' : best_student_natural_acc,
'student_best_robust_acc': best_student_robust_acc,
'best_student_swa_natural_acc' : best_student_swa_natural_acc,
'best_student_swa_robust_acc' : best_student_swa_robust_acc,
'best_student_swa_epoch' : best_student_swa_epoch,
'swa_n_student':swa_n_student
}, filename='swa_student_net_' + file_name+ '_swa_last_epoch_' + str(args.exp_id)+'.pth.tar')
print('At last epoch, SWA Student Model Saved!')
def adjust_learning_rate(optimizer, epoch, lr_decay_epochs, learning_rate):
lr = learning_rate
for i in lr_decay_epochs :
if epoch < i :
break
else:
lr /= 10
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
best_epoch = -1
best_natural_epoch = -1
at_natural_best_natural_acc = -1
at_natural_best_robust_acc = -1
best_student_natural_acc = -1
best_student_robust_acc =-1
best_student_swa_natural_acc = -1
best_student_swa_robust_acc = -1
best_student_swa_epoch = -1
best_swa_natural_epoch = -1
at_natural_best_swa_natural_acc = -1
at_natural_best_swa_robust_acc = -1
if args.resume:
args.start_epoch = checkpoint['epoch'] + 1
best_epoch = checkpoint['best_epoch']
best_student_natural_acc = checkpoint['student_best_natural_acc']
best_student_robust_acc = checkpoint['student_best_robust_acc']
if args.swa_s:
best_student_swa_natural_acc = checkpoint['best_student_swa_natural_acc']
best_student_swa_robust_acc = checkpoint['best_student_swa_robust_acc']
best_student_swa_epoch = checkpoint['best_student_swa_epoch']
swa_n_student = checkpoint['swa_n_student']
print("Resuming from epoch ", args.start_epoch)
for epoch in range(args.start_epoch, args.total_epoch):
if args.kd:
print("Epoch : ", epoch)
adjusted_lr = adjust_learning_rate(peer_optimizer, epoch, lr_decay_epochs_peer, learning_rate_peer)
print("Teacher lr : ", adjusted_lr)
adjusted_lr = adjust_learning_rate(student_optimizer, epoch, lr_decay_epochs_student, learning_rate_student)
print("Student lr :", adjusted_lr)
else:
print("Epoch : ", epoch)
adjusted_lr = adjust_learning_rate(student_optimizer, epoch, lr_decay_epochs_student, learning_rate_student)
print("Current learning rate : ", adjusted_lr)
if args.kd:
train_kd(epoch)
test_kd(epoch)
else:
train(epoch)
test(epoch)
if (epoch % args.save_interval == 0) :
print("The number of epoch reached save interval. Checkpoints are being saved.")
net_state_dict = student_net.state_dict()
save_checkpoint({
'epoch':epoch,
'best_epoch' : best_epoch,
'exp_id': args.exp_id,
'state_dict': net_state_dict,
'student_best_natural_acc' : best_student_natural_acc,
'student_best_robust_acc': best_student_robust_acc,
'optimizer' : student_optimizer.state_dict(),
'best_student_swa_natural_acc' : best_student_swa_natural_acc,
'best_student_swa_robust_acc' : best_student_swa_robust_acc,
'best_student_swa_epoch' : best_student_swa_epoch,
'swa_n_student':swa_n_student
}, filename='student_net_' + file_name+ '_save_interval_' + str(args.exp_id)+'.pth.tar')
print('At epoch ', epoch, ', Student Model Saved!')
if args.kd:
net_state_dict = peer_net.state_dict()
save_checkpoint({
'epoch':epoch,
'best_epoch' : best_epoch,
'exp_id': args.exp_id,
'state_dict': net_state_dict,
'student_best_natural_acc' : best_student_natural_acc,
'student_best_robust_acc': best_student_robust_acc,
'optimizer' : peer_optimizer.state_dict(),
'best_student_swa_natural_acc' : best_student_swa_natural_acc,
'best_student_swa_robust_acc' : best_student_swa_robust_acc,
'best_student_swa_epoch' : best_student_swa_epoch,
'swa_n_student':swa_n_student
}, filename='peer_net_' + file_name + '_save_interval_' + str(args.exp_id)+'.pth.tar')
print('At epoch ', epoch, ', Teacher Model Saved!')
if args.swa_s:
net_state_dict = student_swa_net.state_dict()
save_checkpoint({
'epoch':epoch,
'best_epoch' : best_epoch,
'exp_id': args.exp_id,
'state_dict': net_state_dict,
'student_best_natural_acc' : best_student_natural_acc,
'student_best_robust_acc': best_student_robust_acc,
'best_student_swa_natural_acc' : best_student_swa_natural_acc,
'best_student_swa_robust_acc' : best_student_swa_robust_acc,
'best_student_swa_epoch' : best_student_swa_epoch,
'swa_n_student':swa_n_student
}, filename='swa_student_net_' + file_name+ '_save_interval_' + str(args.exp_id)+'.pth.tar')
print('At epoch ', epoch, ', SWA student Model Saved!')
info_dict = dict()
if args.AA:
threat_model = "Linf"
dataset = args.dataset
device = torch.device("cuda")
if (args.dataset=='cifar10') or (args.dataset=='cifar100'):
AA_data_path = args.data_path
elif args.dataset=='tinyimagenet':
AA_data_path= os.path.join(args.data_path, 'tiny-imagenet-200')
# Student best model test.
if args.kd:
model_path = args.save_path +'student_net_' + file_name+ '_student_best_' + str(args.exp_id)+'.pth.tar'
else:
model_path = args.save_path + str(args.exp_id)+'_baseline_' + file_name + '_student_best'+'.pth.tar'