Model: uniCOIL (without any expansions) on segmented documents (title/segment encoding)
This page describes regression experiments, integrated into Anserini's regression testing framework, using uniCOIL (without any expansions) on the MS MARCO document ranking task. The uniCOIL model is described in the following paper:
Jimmy Lin and Xueguang Ma. A Few Brief Notes on DeepImpact, COIL, and a Conceptual Framework for Information Retrieval Techniques. arXiv:2106.14807.
The experiments on this page are not actually reported in the paper. However, the model is the same, applied to the MS MARCO segmented document corpus (without any expansions). Retrieval uses MaxP technique, where we select the score of the highest-scoring passage from a document as the score for that document to produce a document ranking.
The exact configurations for these regressions are stored in this YAML file.
Note that this page is automatically generated from this template as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead and then run bin/build.sh
to rebuild the documentation.
From one of our Waterloo servers (e.g., orca
), the following command will perform the complete regression, end to end:
python src/main/python/run_regression.py --index --verify --search --regression msmarco-doc-segmented-unicoil-noexp
We make available a version of the MS MARCO document corpus that has already been processed with uniCOIL, i.e., we have performed model inference on every document and stored the output sparse vectors. Thus, no neural inference is involved.
From any machine, the following command will download the corpus and perform the complete regression, end to end:
python src/main/python/run_regression.py --download --index --verify --search --regression msmarco-doc-segmented-unicoil-noexp
The run_regression.py
script automates the following steps, but if you want to perform each step manually, simply copy/paste from the commands below and you'll obtain the same regression results.
Download the corpus and unpack into collections/
:
wget https://rgw.cs.uwaterloo.ca/JIMMYLIN-bucket0/data/msmarco-doc-segmented-unicoil-noexp.tar -P collections/
tar xvf collections/msmarco-doc-segmented-unicoil-noexp.tar -C collections/
To confirm, msmarco-doc-segmented-unicoil-noexp.tar
is 11 GB and has MD5 checksum 11b226e1cacd9c8ae0a660fd14cdd710
.
With the corpus downloaded, the following command will perform the remaining steps below:
python src/main/python/run_regression.py --index --verify --search --regression msmarco-doc-segmented-unicoil-noexp \
--corpus-path collections/msmarco-doc-segmented-unicoil-noexp
Sample indexing command:
target/appassembler/bin/IndexCollection \
-collection JsonVectorCollection \
-input /path/to/msmarco-doc-segmented-unicoil-noexp \
-index indexes/lucene-index.msmarco-doc-segmented-unicoil-noexp/ \
-generator DefaultLuceneDocumentGenerator \
-threads 16 -impact -pretokenized -storeDocvectors \
>& logs/log.msmarco-doc-segmented-unicoil-noexp &
The directory /path/to/msmarco-doc-segmented-unicoil-noexp/
should point to the corpus downloaded above.
The important indexing options to note here are -impact -pretokenized
: the first tells Anserini not to encode BM25 doclengths into Lucene's norms (which is the default) and the second option says not to apply any additional tokenization on the uniCOIL tokens.
Upon completion, we should have an index with 20,545,677 documents.
For additional details, see explanation of common indexing options.
Topics and qrels are stored in src/main/resources/topics-and-qrels/
.
The regression experiments here evaluate on the 6980 dev set questions; see this page for more details.
After indexing has completed, you should be able to perform retrieval as follows:
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.msmarco-doc-segmented-unicoil-noexp/ \
-topics src/main/resources/topics-and-qrels/topics.msmarco-doc.dev.unicoil-noexp.tsv.gz \
-topicreader TsvInt \
-output runs/run.msmarco-doc-segmented-unicoil-noexp.unicoil.topics.msmarco-doc.dev.unicoil-noexp.txt \
-impact -pretokenized -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.msmarco-doc-segmented-unicoil-noexp/ \
-topics src/main/resources/topics-and-qrels/topics.msmarco-doc.dev.unicoil-noexp.tsv.gz \
-topicreader TsvInt \
-output runs/run.msmarco-doc-segmented-unicoil-noexp.rm3.topics.msmarco-doc.dev.unicoil-noexp.txt \
-impact -pretokenized -rm3 -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.msmarco-doc-segmented-unicoil-noexp/ \
-topics src/main/resources/topics-and-qrels/topics.msmarco-doc.dev.unicoil-noexp.tsv.gz \
-topicreader TsvInt \
-output runs/run.msmarco-doc-segmented-unicoil-noexp.rocchio.topics.msmarco-doc.dev.unicoil-noexp.txt \
-impact -pretokenized -rocchio -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &
Evaluation can be performed using trec_eval
:
tools/eval/trec_eval.9.0.4/trec_eval -c -m map src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.unicoil.topics.msmarco-doc.dev.unicoil-noexp.txt
tools/eval/trec_eval.9.0.4/trec_eval -c -M 100 -m recip_rank src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.unicoil.topics.msmarco-doc.dev.unicoil-noexp.txt
tools/eval/trec_eval.9.0.4/trec_eval -c -m recall.100 src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.unicoil.topics.msmarco-doc.dev.unicoil-noexp.txt
tools/eval/trec_eval.9.0.4/trec_eval -c -m recall.1000 src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.unicoil.topics.msmarco-doc.dev.unicoil-noexp.txt
tools/eval/trec_eval.9.0.4/trec_eval -c -m map src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.rm3.topics.msmarco-doc.dev.unicoil-noexp.txt
tools/eval/trec_eval.9.0.4/trec_eval -c -M 100 -m recip_rank src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.rm3.topics.msmarco-doc.dev.unicoil-noexp.txt
tools/eval/trec_eval.9.0.4/trec_eval -c -m recall.100 src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.rm3.topics.msmarco-doc.dev.unicoil-noexp.txt
tools/eval/trec_eval.9.0.4/trec_eval -c -m recall.1000 src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.rm3.topics.msmarco-doc.dev.unicoil-noexp.txt
tools/eval/trec_eval.9.0.4/trec_eval -c -m map src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.rocchio.topics.msmarco-doc.dev.unicoil-noexp.txt
tools/eval/trec_eval.9.0.4/trec_eval -c -M 100 -m recip_rank src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.rocchio.topics.msmarco-doc.dev.unicoil-noexp.txt
tools/eval/trec_eval.9.0.4/trec_eval -c -m recall.100 src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.rocchio.topics.msmarco-doc.dev.unicoil-noexp.txt
tools/eval/trec_eval.9.0.4/trec_eval -c -m recall.1000 src/main/resources/topics-and-qrels/qrels.msmarco-doc.dev.txt runs/run.msmarco-doc-segmented-unicoil-noexp.rocchio.topics.msmarco-doc.dev.unicoil-noexp.txt
With the above commands, you should be able to reproduce the following results:
AP@1000 | uniCOIL (no expansions) | +RM3 | +Rocchio |
---|---|---|---|
MS MARCO Doc: Dev | 0.3413 | 0.3051 | 0.3092 |
RR@100 | uniCOIL (no expansions) | +RM3 | +Rocchio |
---|---|---|---|
MS MARCO Doc: Dev | 0.3409 | 0.3046 | 0.3088 |
R@100 | uniCOIL (no expansions) | +RM3 | +Rocchio |
---|---|---|---|
MS MARCO Doc: Dev | 0.8639 | 0.8604 | 0.8667 |
R@1000 | uniCOIL (no expansions) | +RM3 | +Rocchio |
---|---|---|---|
MS MARCO Doc: Dev | 0.9420 | 0.9497 | 0.9521 |
Note that due to MaxP and the need to generate runs to different depths, we can set -hits
and -selectMaxPassage.hits
differently.
Because of tie-breaking effects, we get slightly different results:
Condition | AP@1000 | RR@100 | R@100 | R@1000 | MS MARCO MRR @100 |
---|---|---|---|---|---|
-hits 10000 -selectMaxPassage.hits 1000 (as above) |
0.3413 | 0.3409 | 0.8639 | 0.9420 | 0.34138671941993426 |
-hits 10000 -selectMaxPassage.hits 100 |
0.3409 | 0.3409 | 0.8639 | - | 0.3410112121151749 |
-hits 1000 -selectMaxPassage.hits 100 |
0.3409 | 0.3409 | 0.8639 | - | 0.3410112121151749 |
Reproduction Log*
To add to this reproduction log, modify this template and run bin/build.sh
to rebuild the documentation.
- Results reproduced by @lintool on 2021-06-28 (commit
1550683
) - Results reproduced by @JMMackenzie on 2021-07-02 (commit
e4c5127
) - Results reproduced by @amallia on 2021-07-14 (commit
dad4b82
) - Results reproduced by @ArvinZhuang on 2021-07-16 (commit
43ad899
) - Results reproduced by @yuki617 on 2022-02-16 (commit
c7614d2
) - Results reproduced by @mayankanand007 on 2022-02-23 (commit
6a70804
) - Results reproduced by @manveertamber on 2022-02-25 (commit
7472d86
) - Results reproduced by @lintool on 2022-06-06 (commit
236b386
)