forked from attractivechaos/kann
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kann.c
982 lines (887 loc) · 29.7 KB
/
kann.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
#include <math.h>
#include <float.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <stdarg.h>
#include "kann.h"
int kann_verbose = 3;
/******************************************
*** @@BASIC: fundamental KANN routines ***
******************************************/
static void kad_ext_collate(int n, kad_node_t **a, float **_x, float **_g, float **_c)
{
int i, j, k, l, n_var;
float *x, *g, *c;
n_var = kad_size_var(n, a);
x = *_x = (float*)realloc(*_x, n_var * sizeof(float));
g = *_g = (float*)realloc(*_g, n_var * sizeof(float));
c = *_c = (float*)realloc(*_c, kad_size_const(n, a) * sizeof(float));
memset(g, 0, n_var * sizeof(float));
for (i = j = k = 0; i < n; ++i) {
kad_node_t *v = a[i];
if (kad_is_var(v)) {
l = kad_len(v);
memcpy(&x[j], v->x, l * sizeof(float));
free(v->x);
v->x = &x[j];
v->g = &g[j];
j += l;
} else if (kad_is_const(v)) {
l = kad_len(v);
memcpy(&c[k], v->x, l * sizeof(float));
free(v->x);
v->x = &c[k];
k += l;
}
}
}
static void kad_ext_sync(int n, kad_node_t **a, float *x, float *g, float *c)
{
int i, j, k;
for (i = j = k = 0; i < n; ++i) {
kad_node_t *v = a[i];
if (kad_is_var(v)) {
v->x = &x[j];
v->g = &g[j];
j += kad_len(v);
} else if (kad_is_const(v)) {
v->x = &c[k];
k += kad_len(v);
}
}
}
kann_t *kann_new(kad_node_t *cost, int n_rest, ...)
{
kann_t *a;
int i, n_roots = 1 + n_rest, has_pivot = 0, has_recur = 0;
kad_node_t **roots;
va_list ap;
if (cost->n_d != 0) return 0;
va_start(ap, n_rest);
roots = (kad_node_t**)malloc((n_roots + 1) * sizeof(kad_node_t*));
for (i = 0; i < n_rest; ++i)
roots[i] = va_arg(ap, kad_node_t*);
roots[i++] = cost;
va_end(ap);
cost->ext_flag |= KANN_F_COST;
a = (kann_t*)calloc(1, sizeof(kann_t));
a->v = kad_compile_array(&a->n, n_roots, roots);
for (i = 0; i < a->n; ++i) {
if (a->v[i]->pre) has_recur = 1;
if (kad_is_pivot(a->v[i])) has_pivot = 1;
}
if (has_recur && !has_pivot) { /* an RNN that doesn't have a pivot; then add a pivot on top of cost and recompile */
cost->ext_flag &= ~KANN_F_COST;
roots[n_roots-1] = cost = kad_avg(1, &cost), cost->ext_flag |= KANN_F_COST;
free(a->v);
a->v = kad_compile_array(&a->n, n_roots, roots);
}
kad_ext_collate(a->n, a->v, &a->x, &a->g, &a->c);
free(roots);
return a;
}
kann_t *kann_clone(kann_t *a, int batch_size)
{
kann_t *b;
b = (kann_t*)calloc(1, sizeof(kann_t));
b->n = a->n;
b->v = kad_clone(a->n, a->v, batch_size);
kad_ext_collate(b->n, b->v, &b->x, &b->g, &b->c);
return b;
}
kann_t *kann_unroll_array(kann_t *a, int *len)
{
kann_t *b;
b = (kann_t*)calloc(1, sizeof(kann_t));
b->x = a->x, b->g = a->g, b->c = a->c; /* these arrays are shared */
b->v = kad_unroll(a->n, a->v, &b->n, len);
return b;
}
kann_t *kann_unroll(kann_t *a, ...)
{
kann_t *b;
va_list ap;
int i, n_pivots, *len;
n_pivots = kad_n_pivots(a->n, a->v);
len = (int*)calloc(n_pivots, sizeof(int));
va_start(ap, a);
for (i = 0; i < n_pivots; ++i) len[i] = va_arg(ap, int);
va_end(ap);
b = kann_unroll_array(a, len);
free(len);
return b;
}
void kann_delete_unrolled(kann_t *a)
{
if (a && a->mt) kann_mt(a, 0, 0);
if (a && a->v) kad_delete(a->n, a->v);
free(a);
}
void kann_delete(kann_t *a)
{
if (a == 0) return;
free(a->x); free(a->g); free(a->c);
kann_delete_unrolled(a);
}
static void kann_switch_core(kann_t *a, int is_train)
{
int i;
for (i = 0; i < a->n; ++i)
if (a->v[i]->op == 12 && a->v[i]->n_child == 2)
*(int32_t*)a->v[i]->ptr = !!is_train;
}
#define chk_flg(flag, mask) ((mask) == 0 || ((flag) & (mask)))
#define chk_lbl(label, query) ((query) == 0 || (label) == (query))
int kann_find(const kann_t *a, uint32_t ext_flag, int32_t ext_label)
{
int i, k, r = -1;
for (i = k = 0; i < a->n; ++i)
if (chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label))
++k, r = i;
return k == 1? r : k == 0? -1 : -2;
}
int kann_feed_bind(kann_t *a, uint32_t ext_flag, int32_t ext_label, float **x)
{
int i, k;
if (x == 0) return 0;
for (i = k = 0; i < a->n; ++i)
if (kad_is_feed(a->v[i]) && chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label))
a->v[i]->x = x[k++];
return k;
}
int kann_feed_dim(const kann_t *a, uint32_t ext_flag, int32_t ext_label)
{
int i, k, n = 0;
for (i = k = 0; i < a->n; ++i)
if (kad_is_feed(a->v[i]) && chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label))
++k, n = a->v[i]->n_d > 1? kad_len(a->v[i]) / a->v[i]->d[0] : a->v[i]->n_d == 1? a->v[i]->d[0] : 1;
return k == 1? n : k == 0? -1 : -2;
}
static float kann_cost_core(kann_t *a, int cost_label, int cal_grad)
{
int i_cost;
float cost;
i_cost = kann_find(a, KANN_F_COST, cost_label);
assert(i_cost >= 0);
cost = *kad_eval_at(a->n, a->v, i_cost);
if (cal_grad) kad_grad(a->n, a->v, i_cost);
return cost;
}
int kann_eval(kann_t *a, uint32_t ext_flag, int ext_label)
{
int i, k;
for (i = k = 0; i < a->n; ++i)
if (chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label))
++k, a->v[i]->tmp = 1;
kad_eval_marked(a->n, a->v);
return k;
}
void kann_rnn_start(kann_t *a)
{
int i;
kann_set_batch_size(a, 1);
for (i = 0; i < a->n; ++i) {
kad_node_t *p = a->v[i];
if (p->pre) { /* NB: BE CAREFUL of the interaction between kann_rnn_start() and kann_set_batch_size() */
kad_node_t *q = p->pre;
if (q->x) memcpy(p->x, q->x, kad_len(p) * sizeof(float));
else memset(p->x, 0, kad_len(p) * sizeof(float));
if (q->n_child > 0) free(q->x);
q->x = p->x;
}
}
}
void kann_rnn_end(kann_t *a)
{
int i;
kad_ext_sync(a->n, a->v, a->x, a->g, a->c);
for (i = 0; i < a->n; ++i)
if (a->v[i]->pre && a->v[i]->pre->n_child > 0)
a->v[i]->pre->x = (float*)calloc(kad_len(a->v[i]->pre), sizeof(float));
}
static int kann_class_error_core(const kann_t *ann, int *base)
{
int i, j, k, m, n, off, n_err = 0;
for (i = 0, *base = 0; i < ann->n; ++i) {
kad_node_t *p = ann->v[i];
if (((p->op == 13 && (p->n_child == 2 || p->n_child == 3)) || (p->op == 22 && p->n_child == 2)) && p->n_d == 0) { /* ce_bin or ce_multi */
kad_node_t *x = p->child[0], *t = p->child[1];
n = t->d[t->n_d - 1], m = kad_len(t) / n;
for (j = off = 0; j < m; ++j, off += n) {
float t_sum = 0.0f, t_min = 1.0f, t_max = 0.0f, x_max = 0.0f, x_min = 1.0f;
int x_max_k = -1, t_max_k = -1;
for (k = 0; k < n; ++k) {
float xk = x->x[off+k], tk = t->x[off+k];
t_sum += tk;
t_min = t_min < tk? t_min : tk;
x_min = x_min < xk? x_min : xk;
if (t_max < tk) t_max = tk, t_max_k = k;
if (x_max < xk) x_max = xk, x_max_k = k;
}
if (t_sum - 1.0f == 0 && t_min >= 0.0f && x_min >= 0.0f && x_max <= 1.0f) {
++(*base);
n_err += (x_max_k != t_max_k);
}
}
}
}
return n_err;
}
/*************************
* @@MT: multi-threading *
*************************/
#ifdef HAVE_PTHREAD
#include <pthread.h>
struct mtaux_t;
typedef struct { /* per-worker data */
kann_t *a;
float cost;
int action;
pthread_t tid;
struct mtaux_t *g;
} mtaux1_t;
typedef struct mtaux_t { /* cross-worker data */
int n_threads, max_batch_size;
int cal_grad, cost_label, eval_out;
volatile int n_idle; /* we will be busy waiting on this, so volatile necessary */
pthread_mutex_t mtx;
pthread_cond_t cv;
mtaux1_t *mt;
} mtaux_t;
static void *mt_worker(void *data) /* pthread worker */
{
mtaux1_t *mt1 = (mtaux1_t*)data;
mtaux_t *mt = mt1->g;
for (;;) {
int action;
pthread_mutex_lock(&mt->mtx);
mt1->action = 0;
++mt->n_idle;
while (mt1->action == 0)
pthread_cond_wait(&mt->cv, &mt->mtx);
action = mt1->action;
pthread_mutex_unlock(&mt->mtx);
if (action == -1) break;
if (mt->eval_out) kann_eval(mt1->a, KANN_F_OUT, 0);
else mt1->cost = kann_cost_core(mt1->a, mt->cost_label, mt->cal_grad);
}
pthread_exit(0);
}
static void mt_destroy(mtaux_t *mt) /* de-allocate an entire mtaux_t struct */
{
int i;
pthread_mutex_lock(&mt->mtx);
mt->n_idle = 0;
for (i = 1; i < mt->n_threads; ++i) mt->mt[i].action = -1;
pthread_cond_broadcast(&mt->cv);
pthread_mutex_unlock(&mt->mtx);
for (i = 1; i < mt->n_threads; ++i) pthread_join(mt->mt[i].tid, 0);
for (i = 0; i < mt->n_threads; ++i) kann_delete(mt->mt[i].a);
free(mt->mt);
pthread_cond_destroy(&mt->cv);
pthread_mutex_destroy(&mt->mtx);
free(mt);
}
void kann_mt(kann_t *ann, int n_threads, int max_batch_size)
{
mtaux_t *mt;
int i, k;
if (n_threads <= 1) {
if (ann->mt) mt_destroy((mtaux_t*)ann->mt);
ann->mt = 0;
return;
}
if (n_threads > max_batch_size) n_threads = max_batch_size;
if (n_threads <= 1) return;
mt = (mtaux_t*)calloc(1, sizeof(mtaux_t));
mt->n_threads = n_threads, mt->max_batch_size = max_batch_size;
pthread_mutex_init(&mt->mtx, 0);
pthread_cond_init(&mt->cv, 0);
mt->mt = (mtaux1_t*)calloc(n_threads, sizeof(mtaux1_t));
for (i = k = 0; i < n_threads; ++i) {
int size = (max_batch_size - k) / (n_threads - i);
mt->mt[i].a = kann_clone(ann, size);
mt->mt[i].g = mt;
k += size;
}
for (i = 1; i < n_threads; ++i)
pthread_create(&mt->mt[i].tid, 0, mt_worker, &mt->mt[i]);
while (mt->n_idle < n_threads - 1); /* busy waiting until all threads in sync */
ann->mt = mt;
}
static void mt_kickoff(kann_t *a, int cost_label, int cal_grad, int eval_out)
{
mtaux_t *mt = (mtaux_t*)a->mt;
int i, j, k, B, n_var;
B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */
assert(B <= mt->max_batch_size); /* TODO: can be relaxed */
n_var = kann_size_var(a);
pthread_mutex_lock(&mt->mtx);
mt->cost_label = cost_label, mt->cal_grad = cal_grad, mt->eval_out = eval_out;
for (i = k = 0; i < mt->n_threads; ++i) {
int size = (B - k) / (mt->n_threads - i);
for (j = 0; j < a->n; ++j)
if (kad_is_feed(a->v[j]))
mt->mt[i].a->v[j]->x = &a->v[j]->x[k * kad_len(a->v[j]) / a->v[j]->d[0]];
kad_sync_dim(mt->mt[i].a->n, mt->mt[i].a->v, size); /* TODO: we can point ->x to internal nodes, too */
k += size;
memcpy(mt->mt[i].a->x, a->x, n_var * sizeof(float));
mt->mt[i].action = 1;
}
mt->n_idle = 0;
pthread_cond_broadcast(&mt->cv);
pthread_mutex_unlock(&mt->mtx);
}
float kann_cost(kann_t *a, int cost_label, int cal_grad)
{
mtaux_t *mt = (mtaux_t*)a->mt;
int i, j, B, k, n_var;
float cost;
if (mt == 0) return kann_cost_core(a, cost_label, cal_grad);
B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */
n_var = kann_size_var(a);
mt_kickoff(a, cost_label, cal_grad, 0);
mt->mt[0].cost = kann_cost_core(mt->mt[0].a, cost_label, cal_grad);
while (mt->n_idle < mt->n_threads - 1); /* busy waiting until all threads in sync */
memset(a->g, 0, n_var * sizeof(float)); /* TODO: check if this is necessary when cal_grad is false */
for (i = k = 0, cost = 0.0f; i < mt->n_threads; ++i) {
int size = (B - k) / (mt->n_threads - i);
cost += mt->mt[i].cost * size / B;
kad_saxpy(n_var, (float)size / B, mt->mt[i].a->g, a->g);
k += size;
}
for (j = 0; j < a->n; ++j) { /* copy values back at recurrent nodes (needed by textgen; TODO: temporary solution) */
kad_node_t *p = a->v[j];
if (p->pre && p->n_d >= 2 && p->d[0] == B) {
for (i = k = 0; i < mt->n_threads; ++i) {
kad_node_t *q = mt->mt[i].a->v[j];
memcpy(&p->x[k], q->x, kad_len(q) * sizeof(float));
k += kad_len(q);
}
}
}
return cost;
}
int kann_eval_out(kann_t *a)
{
mtaux_t *mt = (mtaux_t*)a->mt;
int j, B, n_eval;
if (mt == 0) return kann_eval(a, KANN_F_OUT, 0);
B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */
mt_kickoff(a, 0, 0, 1);
n_eval = kann_eval(mt->mt[0].a, KANN_F_OUT, 0);
while (mt->n_idle < mt->n_threads - 1); /* busy waiting until all threads in sync */
for (j = 0; j < a->n; ++j) { /* copy output values back */
kad_node_t *p = a->v[j];
if (p->ext_flag & KANN_F_OUT) {
int i, t, k, d0 = p->d[0] / B, d1 = 1; /* for RNN, p->d[0] may equal unroll_len * batch_size */
assert(p->d[0] % B == 0);
for (i = 1; i < p->n_d; ++i) d1 *= p->d[i];
for (i = 0; i < d0; ++i) {
for (t = k = 0; t < mt->n_threads; ++t) { /* similar to the forward pass of kad_op_concat() */
kad_node_t *q = mt->mt[t].a->v[j];
int size = q->d[0] / d0;
memcpy(&p->x[(i * B + k) * d1], &q->x[i * size * d1], size * d1 * sizeof(float));
k += size;
}
}
}
}
return n_eval;
}
int kann_class_error(const kann_t *ann, int *base)
{
mtaux_t *mt = (mtaux_t*)ann->mt;
int i, n_err = 0, b = 0;
if (mt == 0) return kann_class_error_core(ann, base);
for (i = 0; i < mt->n_threads; ++i) {
n_err += kann_class_error_core(mt->mt[i].a, &b);
*base += b;
}
return n_err;
}
void kann_switch(kann_t *ann, int is_train)
{
mtaux_t *mt = (mtaux_t*)ann->mt;
int i;
if (mt == 0) {
kann_switch_core(ann, is_train);
return;
}
for (i = 0; i < mt->n_threads; ++i)
kann_switch_core(mt->mt[i].a, is_train);
}
#else
void kann_mt(kann_t *ann, int n_threads, int max_batch_size) {}
float kann_cost(kann_t *a, int cost_label, int cal_grad) { return kann_cost_core(a, cost_label, cal_grad); }
int kann_eval_out(kann_t *a) { return kann_eval(a, KANN_F_OUT, 0); }
int kann_class_error(const kann_t *a, int *base) { return kann_class_error_core(a, base); }
void kann_switch(kann_t *ann, int is_train) { return kann_switch_core(ann, is_train); }
#endif
/***********************
*** @@IO: model I/O ***
***********************/
#define KANN_MAGIC "KAN\1"
void kann_save_fp(FILE *fp, kann_t *ann)
{
kann_set_batch_size(ann, 1);
fwrite(KANN_MAGIC, 1, 4, fp);
kad_save(fp, ann->n, ann->v);
fwrite(ann->x, sizeof(float), kann_size_var(ann), fp);
fwrite(ann->c, sizeof(float), kann_size_const(ann), fp);
}
void kann_save(const char *fn, kann_t *ann)
{
FILE *fp;
fp = fn && strcmp(fn, "-")? fopen(fn, "wb") : stdout;
kann_save_fp(fp, ann);
fclose(fp);
}
kann_t *kann_load_fp(FILE *fp)
{
char magic[4];
kann_t *ann;
int n_var, n_const;
fread(magic, 1, 4, fp);
if (strncmp(magic, KANN_MAGIC, 4) != 0) {
fclose(fp);
return 0;
}
ann = (kann_t*)calloc(1, sizeof(kann_t));
ann->v = kad_load(fp, &ann->n);
n_var = kad_size_var(ann->n, ann->v);
n_const = kad_size_const(ann->n, ann->v);
ann->x = (float*)malloc(n_var * sizeof(float));
ann->g = (float*)calloc(n_var, sizeof(float));
ann->c = (float*)malloc(n_const * sizeof(float));
fread(ann->x, sizeof(float), n_var, fp);
fread(ann->c, sizeof(float), n_const, fp);
kad_ext_sync(ann->n, ann->v, ann->x, ann->g, ann->c);
return ann;
}
kann_t *kann_load(const char *fn)
{
FILE *fp;
kann_t *ann;
fp = fn && strcmp(fn, "-")? fopen(fn, "rb") : stdin;
ann = kann_load_fp(fp);
fclose(fp);
return ann;
}
/**********************************************
*** @@LAYER: layers and model generation ***
**********************************************/
/********** General but more complex APIs **********/
kad_node_t *kann_new_leaf_array(int *offset, kad_node_p *par, uint8_t flag, float x0_01, int n_d, int32_t d[KAD_MAX_DIM])
{
int i, len, off = offset && par? *offset : -1;
kad_node_t *p;
if (off >= 0 && par[off]) return par[(*offset)++];
p = (kad_node_t*)calloc(1, sizeof(kad_node_t));
p->n_d = n_d, p->flag = flag;
memcpy(p->d, d, n_d * sizeof(int32_t));
len = kad_len(p);
p->x = (float*)calloc(len, sizeof(float));
if (p->n_d <= 1) {
for (i = 0; i < len; ++i)
p->x[i] = x0_01;
} else {
double sdev_inv;
sdev_inv = 1.0 / sqrt((double)len / p->d[0]);
for (i = 0; i < len; ++i)
p->x[i] = (float)(kad_drand_normal(0) * sdev_inv);
}
if (off >= 0) par[off] = p, ++(*offset);
return p;
}
kad_node_t *kann_new_leaf2(int *offset, kad_node_p *par, uint8_t flag, float x0_01, int n_d, ...)
{
int32_t i, d[KAD_MAX_DIM];
va_list ap;
va_start(ap, n_d); for (i = 0; i < n_d; ++i) d[i] = va_arg(ap, int); va_end(ap);
return kann_new_leaf_array(offset, par, flag, x0_01, n_d, d);
}
kad_node_t *kann_layer_dense2(int *offset, kad_node_p *par, kad_node_t *in, int n1)
{
int n0;
kad_node_t *w, *b;
n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in);
w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0);
b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1);
return kad_add(kad_cmul(in, w), b);
}
kad_node_t *kann_layer_dropout2(int *offset, kad_node_p *par, kad_node_t *t, float r)
{
kad_node_t *x[2], *cr;
cr = kann_new_leaf2(offset, par, KAD_CONST, r, 0);
x[0] = t, x[1] = kad_dropout(t, cr);
return kad_switch(2, x);
}
kad_node_t *kann_layer_layernorm2(int *offset, kad_node_t **par, kad_node_t *in)
{
int n0;
kad_node_t *alpha, *beta;
n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in);
alpha = kann_new_leaf2(offset, par, KAD_VAR, 1.0f, 1, n0);
beta = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n0);
return kad_add(kad_mul(kad_stdnorm(in), alpha), beta);
}
static inline kad_node_t *cmul_norm2(int *offset, kad_node_t **par, kad_node_t *x, kad_node_t *w, int use_norm)
{
return use_norm? kann_layer_layernorm2(offset, par, kad_cmul(x, w)) : kad_cmul(x, w);
}
kad_node_t *kann_layer_rnn2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag)
{
int n0, n1 = h0->d[h0->n_d-1], use_norm = !!(rnn_flag & KANN_RNN_NORM);
kad_node_t *t, *w, *u, *b, *out;
u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1);
b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1);
t = cmul_norm2(offset, par, h0, u, use_norm);
if (in) {
n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in);
w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0);
t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t);
}
out = kad_tanh(kad_add(t, b));
out->pre = h0;
return out;
}
kad_node_t *kann_layer_gru2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag)
{
int n0 = 0, n1 = h0->d[h0->n_d-1], use_norm = !!(rnn_flag & KANN_RNN_NORM);
kad_node_t *t, *r, *z, *w, *u, *b, *s, *out;
if (in) n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in);
/* z = sigm(x_t * W_z + h_{t-1} * U_z + b_z) */
u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1);
b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1);
t = cmul_norm2(offset, par, h0, u, use_norm);
if (in) {
w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0);
t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t);
}
z = kad_sigm(kad_add(t, b));
/* r = sigm(x_t * W_r + h_{t-1} * U_r + b_r) */
u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1);
b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1);
t = cmul_norm2(offset, par, h0, u, use_norm);
if (in) {
w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0);
t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t);
}
r = kad_sigm(kad_add(t, b));
/* s = tanh(x_t * W_s + (h_{t-1} # r) * U_s + b_s) */
u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1);
b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1);
t = cmul_norm2(offset, par, kad_mul(r, h0), u, use_norm);
if (in) {
w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0);
t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t);
}
s = kad_tanh(kad_add(t, b));
/* h_t = z # h_{t-1} + (1 - z) # s */
out = kad_add(kad_mul(kad_1minus(z), s), kad_mul(z, h0));
out->pre = h0;
return out;
}
/********** APIs without offset & par **********/
kad_node_t *kann_new_leaf(uint8_t flag, float x0_01, int n_d, ...)
{
int32_t i, d[KAD_MAX_DIM];
va_list ap;
va_start(ap, n_d); for (i = 0; i < n_d; ++i) d[i] = va_arg(ap, int); va_end(ap);
return kann_new_leaf_array(0, 0, flag, x0_01, n_d, d);
}
kad_node_t *kann_new_scalar(uint8_t flag, float x) { return kann_new_leaf(flag, x, 0); }
kad_node_t *kann_new_weight(int n_row, int n_col) { return kann_new_leaf(KAD_VAR, 0.0f, 2, n_row, n_col); }
kad_node_t *kann_new_vec(int n, float x) { return kann_new_leaf(KAD_VAR, x, 1, n); }
kad_node_t *kann_new_bias(int n) { return kann_new_vec(n, 0.0f); }
kad_node_t *kann_new_weight_conv2d(int n_out, int n_in, int k_row, int k_col) { return kann_new_leaf(KAD_VAR, 0.0f, 4, n_out, n_in, k_row, k_col); }
kad_node_t *kann_new_weight_conv1d(int n_out, int n_in, int kernel_len) { return kann_new_leaf(KAD_VAR, 0.0f, 3, n_out, n_in, kernel_len); }
kad_node_t *kann_layer_input(int n1)
{
kad_node_t *t;
t = kad_feed(2, 1, n1), t->ext_flag |= KANN_F_IN;
return t;
}
kad_node_t *kann_layer_dense(kad_node_t *in, int n1) { return kann_layer_dense2(0, 0, in, n1); }
kad_node_t *kann_layer_dropout(kad_node_t *t, float r) { return kann_layer_dropout2(0, 0, t, r); }
kad_node_t *kann_layer_layernorm(kad_node_t *in) { return kann_layer_layernorm2(0, 0, in); }
kad_node_t *kann_layer_rnn(kad_node_t *in, int n1, int rnn_flag)
{
kad_node_t *h0;
h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1);
h0->x = (float*)calloc(n1, sizeof(float));
return kann_layer_rnn2(0, 0, in, h0, rnn_flag);
}
kad_node_t *kann_layer_gru(kad_node_t *in, int n1, int rnn_flag)
{
kad_node_t *h0;
h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1);
h0->x = (float*)calloc(n1, sizeof(float));
return kann_layer_gru2(0, 0, in, h0, rnn_flag);
}
static kad_node_t *kann_cmul_norm(kad_node_t *x, kad_node_t *w)
{
return kann_layer_layernorm(kad_cmul(x, w));
}
kad_node_t *kann_layer_lstm(kad_node_t *in, int n1, int rnn_flag)
{
int n0;
kad_node_t *i, *f, *o, *g, *w, *u, *b, *h0, *c0, *c, *out;
kad_node_t *(*cmul)(kad_node_t*, kad_node_t*) = (rnn_flag & KANN_RNN_NORM)? kann_cmul_norm : kad_cmul;
n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in);
h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1);
h0->x = (float*)calloc(n1, sizeof(float));
c0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1);
c0->x = (float*)calloc(n1, sizeof(float));
/* i = sigm(x_t * W_i + h_{t-1} * U_i + b_i) */
w = kann_new_weight(n1, n0);
u = kann_new_weight(n1, n1);
b = kann_new_bias(n1);
i = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b));
/* f = sigm(x_t * W_f + h_{t-1} * U_f + b_f) */
w = kann_new_weight(n1, n0);
u = kann_new_weight(n1, n1);
b = kann_new_vec(n1, 1.0f); /* see Jozefowicz et al on using a large bias */
f = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b));
/* o = sigm(x_t * W_o + h_{t-1} * U_o + b_o) */
w = kann_new_weight(n1, n0);
u = kann_new_weight(n1, n1);
b = kann_new_bias(n1);
o = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b));
/* g = tanh(x_t * W_g + h_{t-1} * U_g + b_g) */
w = kann_new_weight(n1, n0);
u = kann_new_weight(n1, n1);
b = kann_new_bias(n1);
g = kad_tanh(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b));
/* c_t = c_{t-1} # f + g # i */
c = kad_add(kad_mul(f, c0), kad_mul(g, i)); /* can't be kad_mul(c0, f)!!! */
c->pre = c0;
/* h_t = tanh(c_t) # o */
if (rnn_flag & KANN_RNN_NORM) c = kann_layer_layernorm(c); /* see Ba et al (2016) about how to apply layer normalization to LSTM */
out = kad_mul(kad_tanh(c), o);
out->pre = h0;
return out;
}
kad_node_t *kann_layer_conv2d(kad_node_t *in, int n_flt, int k_rows, int k_cols, int stride_r, int stride_c, int pad_r, int pad_c)
{
kad_node_t *w;
w = kann_new_weight_conv2d(n_flt, in->d[1], k_rows, k_cols);
return kad_conv2d(in, w, stride_r, stride_c, pad_r, pad_c);
}
kad_node_t *kann_layer_conv1d(kad_node_t *in, int n_flt, int k_size, int stride, int pad)
{
kad_node_t *w;
w = kann_new_weight_conv1d(n_flt, in->d[1], k_size);
return kad_conv1d(in, w, stride, pad);
}
kad_node_t *kann_layer_cost(kad_node_t *t, int n_out, int cost_type)
{
kad_node_t *cost = 0, *truth = 0;
assert(cost_type == KANN_C_CEB || cost_type == KANN_C_CEM || cost_type == KANN_C_CEB_NEG || cost_type == KANN_C_MSE);
t = kann_layer_dense(t, n_out);
truth = kad_feed(2, 1, n_out), truth->ext_flag |= KANN_F_TRUTH;
if (cost_type == KANN_C_MSE) {
cost = kad_mse(t, truth);
} else if (cost_type == KANN_C_CEB) {
t = kad_sigm(t);
cost = kad_ce_bin(t, truth);
} else if (cost_type == KANN_C_CEB_NEG) {
t = kad_tanh(t);
cost = kad_ce_bin_neg(t, truth);
} else if (cost_type == KANN_C_CEM) {
t = kad_softmax(t);
cost = kad_ce_multi(t, truth);
}
t->ext_flag |= KANN_F_OUT, cost->ext_flag |= KANN_F_COST;
return cost;
}
void kann_shuffle(int n, int *s)
{
int i, j, t;
for (i = 0; i < n; ++i) s[i] = i;
for (i = n; i > 0; --i) {
j = (int)(i * kad_drand(0));
t = s[j], s[j] = s[i-1], s[i-1] = t;
}
}
/***************************
*** @@MIN: minimization ***
***************************/
#ifdef __SSE__
#include <xmmintrin.h>
void kann_RMSprop(int n, float h0, const float *h, float decay, const float *g, float *t, float *r)
{
int i, n4 = n>>2<<2;
__m128 vh, vg, vr, vt, vd, vd1, tmp, vtiny;
vh = _mm_set1_ps(h0);
vd = _mm_set1_ps(decay);
vd1 = _mm_set1_ps(1.0f - decay);
vtiny = _mm_set1_ps(1e-6f);
for (i = 0; i < n4; i += 4) {
vt = _mm_loadu_ps(&t[i]);
vr = _mm_loadu_ps(&r[i]);
vg = _mm_loadu_ps(&g[i]);
if (h) vh = _mm_loadu_ps(&h[i]);
vr = _mm_add_ps(_mm_mul_ps(vd1, _mm_mul_ps(vg, vg)), _mm_mul_ps(vd, vr));
_mm_storeu_ps(&r[i], vr);
tmp = _mm_sub_ps(vt, _mm_mul_ps(_mm_mul_ps(vh, _mm_rsqrt_ps(_mm_add_ps(vtiny, vr))), vg));
_mm_storeu_ps(&t[i], tmp);
}
for (; i < n; ++i) {
r[i] = (1. - decay) * g[i] * g[i] + decay * r[i];
t[i] -= (h? h[i] : h0) / sqrtf(1e-6f + r[i]) * g[i];
}
}
#else
void kann_RMSprop(int n, float h0, const float *h, float decay, const float *g, float *t, float *r)
{
int i;
for (i = 0; i < n; ++i) {
float lr = h? h[i] : h0;
r[i] = (1.0f - decay) * g[i] * g[i] + decay * r[i];
t[i] -= lr / sqrtf(1e-6f + r[i]) * g[i];
}
}
#endif
float kann_grad_clip(float thres, int n, float *g)
{
int i;
double s2 = 0.0;
for (i = 0; i < n; ++i)
s2 += g[i] * g[i];
s2 = sqrt(s2);
if (s2 > thres)
for (i = 0, s2 = 1.0 / s2; i < n; ++i)
g[i] *= (float)s2;
return (float)s2 / thres;
}
/****************************************************************
*** @@XY: simpler API for network with a single input/output ***
****************************************************************/
int kann_train_fnn1(kann_t *ann, float lr, int mini_size, int max_epoch, int max_drop_streak, float frac_val, int n, float **_x, float **_y)
{
int i, j, *shuf, n_train, n_val, n_in, n_out, n_var, n_const, drop_streak = 0, min_set = 0;
float **x, **y, *x1, *y1, *r, min_val_cost = FLT_MAX, *min_x, *min_c;
n_in = kann_dim_in(ann);
n_out = kann_dim_out(ann);
if (n_in < 0 || n_out < 0) return -1;
n_var = kann_size_var(ann);
n_const = kann_size_const(ann);
r = (float*)calloc(n_var, sizeof(float));
shuf = (int*)malloc(n * sizeof(int));
x = (float**)malloc(n * sizeof(float*));
y = (float**)malloc(n * sizeof(float*));
kann_shuffle(n, shuf);
for (j = 0; j < n; ++j)
x[j] = _x[shuf[j]], y[j] = _y[shuf[j]];
n_val = (int)(n * frac_val);
n_train = n - n_val;
min_x = (float*)malloc(n_var * sizeof(float));
min_c = (float*)malloc(n_const * sizeof(float));
x1 = (float*)malloc(n_in * mini_size * sizeof(float));
y1 = (float*)malloc(n_out * mini_size * sizeof(float));
kann_feed_bind(ann, KANN_F_IN, 0, &x1);
kann_feed_bind(ann, KANN_F_TRUTH, 0, &y1);
for (i = 0; i < max_epoch; ++i) {
int n_proc = 0, n_train_err = 0, n_val_err = 0, n_train_base = 0, n_val_base = 0;
double train_cost = 0.0, val_cost = 0.0;
kann_shuffle(n_train, shuf);
kann_switch(ann, 1);
while (n_proc < n_train) {
int b, c, ms = n_train - n_proc < mini_size? n_train - n_proc : mini_size;
for (b = 0; b < ms; ++b) {
memcpy(&x1[b*n_in], x[shuf[n_proc+b]], n_in * sizeof(float));
memcpy(&y1[b*n_out], y[shuf[n_proc+b]], n_out * sizeof(float));
}
kann_set_batch_size(ann, ms);
train_cost += kann_cost(ann, 0, 1) * ms;
c = kann_class_error(ann, &b);
n_train_err += c, n_train_base += b;
kann_RMSprop(n_var, lr, 0, 0.9f, ann->g, ann->x, r);
n_proc += ms;
}
train_cost /= n_train;
kann_switch(ann, 0);
n_proc = 0;
while (n_proc < n_val) {
int b, c, ms = n_val - n_proc < mini_size? n_val - n_proc : mini_size;
for (b = 0; b < ms; ++b) {
memcpy(&x1[b*n_in], x[n_train+n_proc+b], n_in * sizeof(float));
memcpy(&y1[b*n_out], y[n_train+n_proc+b], n_out * sizeof(float));
}
kann_set_batch_size(ann, ms);
val_cost += kann_cost(ann, 0, 0) * ms;
c = kann_class_error(ann, &b);
n_val_err += c, n_val_base += b;
n_proc += ms;
}
if (n_val > 0) val_cost /= n_val;
if (kann_verbose >= 3) {
fprintf(stderr, "epoch: %d; training cost: %g", i+1, train_cost);
if (n_train_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_train_err / n_train);
if (n_val > 0) {
fprintf(stderr, "; validation cost: %g", val_cost);
if (n_val_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_val_err / n_val);
}
fputc('\n', stderr);
}
if (i >= max_drop_streak && n_val > 0) {
if (val_cost < min_val_cost) {
min_set = 1;
memcpy(min_x, ann->x, n_var * sizeof(float));
memcpy(min_c, ann->c, n_const * sizeof(float));
drop_streak = 0;
min_val_cost = (float)val_cost;
} else if (++drop_streak >= max_drop_streak)
break;
}
}
if (min_set) {
memcpy(ann->x, min_x, n_var * sizeof(float));
memcpy(ann->c, min_c, n_const * sizeof(float));
}
free(min_c); free(min_x); free(y1); free(x1); free(y); free(x); free(shuf); free(r);
return i;
}
float kann_cost_fnn1(kann_t *ann, int n, float **x, float **y)
{
int n_in, n_out, n_proc = 0, mini_size = 64 < n? 64 : n;
float *x1, *y1;
double cost = 0.0;
n_in = kann_dim_in(ann);
n_out = kann_dim_out(ann);
if (n <= 0 || n_in < 0 || n_out < 0) return 0.0;
x1 = (float*)malloc(n_in * mini_size * sizeof(float));
y1 = (float*)malloc(n_out * mini_size * sizeof(float));
kann_feed_bind(ann, KANN_F_IN, 0, &x1);
kann_feed_bind(ann, KANN_F_TRUTH, 0, &y1);
kann_switch(ann, 0);
while (n_proc < n) {
int b, ms = n - n_proc < mini_size? n - n_proc : mini_size;
for (b = 0; b < ms; ++b) {
memcpy(&x1[b*n_in], x[n_proc+b], n_in * sizeof(float));
memcpy(&y1[b*n_out], y[n_proc+b], n_out * sizeof(float));
}
kann_set_batch_size(ann, ms);
cost += kann_cost(ann, 0, 0) * ms;
n_proc += ms;
}
free(y1); free(x1);
return (float)(cost / n);
}
const float *kann_apply1_to(kann_t *a, float *x, int ext_flag, int ext_label)
{
int i_out;
i_out = kann_find(a, ext_flag, ext_label);
if (i_out < 0) return 0;
kann_set_batch_size(a, 1);
kann_feed_bind(a, KANN_F_IN, 0, &x);
kad_eval_at(a->n, a->v, i_out);
return a->v[i_out]->x;
}
const float *kann_apply1(kann_t *a, float *x)
{
return kann_apply1_to(a, x, KANN_F_OUT, 0);
}