-
Notifications
You must be signed in to change notification settings - Fork 91
/
utils.py
368 lines (290 loc) · 11.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
import pathlib
from glob import glob
from argparse import ArgumentParser
import torch
import pytorch_lightning as pl
import numpy as np
import cv2
import random
import math
from torchvision import transforms
def do_training(hparams, model_constructor):
# instantiate model
model = model_constructor(**vars(hparams))
# set all sorts of training parameters
hparams.gpus = -1
hparams.accelerator = "ddp"
hparams.benchmark = True
if hparams.dry_run:
print("Doing a dry run")
hparams.overfit_batches = hparams.batch_size
if not hparams.no_resume:
hparams = set_resume_parameters(hparams)
if not hasattr(hparams, "version") or hparams.version is None:
hparams.version = 0
hparams.sync_batchnorm = True
ttlogger = pl.loggers.TestTubeLogger(
"checkpoints", name=hparams.exp_name, version=hparams.version
)
hparams.callbacks = make_checkpoint_callbacks(hparams.exp_name, hparams.version)
wblogger = get_wandb_logger(hparams)
hparams.logger = [wblogger, ttlogger]
trainer = pl.Trainer.from_argparse_args(hparams)
trainer.fit(model)
def get_default_argument_parser():
parser = ArgumentParser(add_help=False)
parser.add_argument(
"--num_nodes",
type=int,
default=1,
help="number of nodes for distributed training",
)
parser.add_argument(
"--exp_name", type=str, required=True, help="name your experiment"
)
parser.add_argument(
"--dry-run",
action="store_true",
default=False,
help="run on batch of train/val/test",
)
parser.add_argument(
"--no_resume",
action="store_true",
default=False,
help="resume if we have a checkpoint",
)
parser.add_argument(
"--accumulate_grad_batches",
type=int,
default=1,
help="accumulate N batches for gradient computation",
)
parser.add_argument(
"--max_epochs", type=int, default=200, help="maximum number of epochs"
)
parser.add_argument(
"--project_name", type=str, default="lightseg", help="project name for logging"
)
return parser
def make_checkpoint_callbacks(exp_name, version, base_path="checkpoints", frequency=1):
version = 0 if version is None else version
base_callback = pl.callbacks.ModelCheckpoint(
dirpath=f"{base_path}/{exp_name}/version_{version}/checkpoints/",
save_last=True,
verbose=True,
)
val_callback = pl.callbacks.ModelCheckpoint(
monitor="val_acc_epoch",
dirpath=f"{base_path}/{exp_name}/version_{version}/checkpoints/",
filename="result-{epoch}-{val_acc_epoch:.2f}",
mode="max",
save_top_k=3,
verbose=True,
)
return [base_callback, val_callback]
def get_latest_version(folder):
versions = [
int(pathlib.PurePath(path).name.split("_")[-1])
for path in glob(f"{folder}/version_*/")
]
if len(versions) == 0:
return None
versions.sort()
return versions[-1]
def get_latest_checkpoint(exp_name, version):
while version > -1:
folder = f"./checkpoints/{exp_name}/version_{version}/checkpoints/"
latest = f"{folder}/last.ckpt"
if os.path.exists(latest):
return latest, version
chkpts = glob(f"{folder}/epoch=*.ckpt")
if len(chkpts) > 0:
break
version -= 1
if len(chkpts) == 0:
return None, None
latest = max(chkpts, key=os.path.getctime)
return latest, version
def set_resume_parameters(hparams):
version = get_latest_version(f"./checkpoints/{hparams.exp_name}")
if version is not None:
latest, version = get_latest_checkpoint(hparams.exp_name, version)
print(f"Resuming checkpoint {latest}, exp_version={version}")
hparams.resume_from_checkpoint = latest
hparams.version = version
wandb_file = "checkpoints/{hparams.exp_name}/version_{version}/wandb_id"
if os.path.exists(wandb_file):
with open(wandb_file, "r") as f:
hparams.wandb_id = f.read()
else:
version = 0
return hparams
def get_wandb_logger(hparams):
exp_dir = f"checkpoints/{hparams.exp_name}/version_{hparams.version}/"
id_file = f"{exp_dir}/wandb_id"
if os.path.exists(id_file):
with open(id_file) as f:
hparams.wandb_id = f.read()
else:
hparams.wandb_id = None
logger = pl.loggers.WandbLogger(
save_dir="checkpoints",
project=hparams.project_name,
name=hparams.exp_name,
id=hparams.wandb_id,
)
if hparams.wandb_id is None:
_ = logger.experiment
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
with open(id_file, "w") as f:
f.write(logger.version)
return logger
class Resize(object):
"""Resize sample to given size (width, height)."""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
letter_box=False,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
self.__letter_box = letter_box
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented"
)
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, min_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, min_val=self.__width
)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, max_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, max_val=self.__width
)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def make_letter_box(self, sample):
top = bottom = (self.__height - sample.shape[0]) // 2
left = right = (self.__width - sample.shape[1]) // 2
sample = cv2.copyMakeBorder(
sample, top, bottom, left, right, cv2.BORDER_CONSTANT, None, 0
)
return sample
def __call__(self, sample):
width, height = self.get_size(
sample["image"].shape[1], sample["image"].shape[0]
)
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__letter_box:
sample["image"] = self.make_letter_box(sample["image"])
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if self.__letter_box:
sample["disparity"] = self.make_letter_box(sample["disparity"])
if "depth" in sample:
sample["depth"] = cv2.resize(
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
)
if self.__letter_box:
sample["depth"] = self.make_letter_box(sample["depth"])
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if self.__letter_box:
sample["mask"] = self.make_letter_box(sample["mask"])
sample["mask"] = sample["mask"].astype(bool)
return sample