@@ -327,17 +327,17 @@ infinite value. It also removes the corresponding attributes.
327
327
pointcloud.def (
328
328
" orient_normals_consistent_tangent_plane" ,
329
329
&PointCloud::OrientNormalsConsistentTangentPlane, " k" _a,
330
- " lambda " _a = 0.0 , " cos_alpha_tol" _a = 1.0 ,
330
+ " lambda_penalty " _a = 0.0 , " cos_alpha_tol" _a = 1.0 ,
331
331
R"( Function to consistently orient the normals of a point cloud based on tangent planes.
332
332
333
333
The algorithm is described in Hoppe et al., "Surface Reconstruction from Unorganized Points", 1992.
334
- Additional information about the choice of lambda and cos_alpha_tol for complex
334
+ Additional information about the choice of lambda_penalty and cos_alpha_tol for complex
335
335
point clouds can be found in Piazza, Valentini, Varetti, "Mesh Reconstruction from Point Cloud", 2023
336
336
(https://eugeniovaretti.github.io/meshreco/Piazza_Valentini_Varetti_MeshReconstructionFromPointCloud_2023.pdf).
337
337
338
338
Args:
339
339
k (int): Number of neighbors to use for tangent plane estimation.
340
- lambda (float): A non-negative real parameter that influences the distance
340
+ lambda_penalty (float): A non-negative real parameter that influences the distance
341
341
metric used to identify the true neighbors of a point in complex
342
342
geometries. It penalizes the distance between a point and the tangent
343
343
plane defined by the reference point and its normal vector, helping to
@@ -350,7 +350,7 @@ point clouds can be found in Piazza, Valentini, Varetti, "Mesh Reconstruction fr
350
350
Example:
351
351
We use Bunny point cloud to compute its normals and orient them consistently.
352
352
The initial reconstruction adheres to Hoppe's algorithm (raw), whereas the
353
- second reconstruction utilises the lambda and cos_alpha_tol parameters.
353
+ second reconstruction utilises the lambda_penalty and cos_alpha_tol parameters.
354
354
Due to the high density of the Bunny point cloud available in Open3D a larger
355
355
value of the parameter k is employed to test the algorithm. Usually you do
356
356
not have at disposal such a refined point clouds, thus you cannot find a
@@ -375,7 +375,7 @@ point clouds can be found in Piazza, Valentini, Varetti, "Mesh Reconstruction fr
375
375
poisson_mesh.compute_vertex_normals()
376
376
o3d.visualization.draw_geometries([poisson_mesh])
377
377
378
- # Case 2, reconstruction using lambda and cos_alpha_tol parameters:
378
+ # Case 2, reconstruction using lambda_penalty and cos_alpha_tol parameters:
379
379
pcd_robust = o3d.io.read_point_cloud(data.path)
380
380
381
381
# Compute normals and orient them consistently, using k=100 neighbours
0 commit comments