-
Notifications
You must be signed in to change notification settings - Fork 2
/
config.yml
164 lines (164 loc) · 5.33 KB
/
config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
twinspect: 0.1.0
algorithms:
- name: ISCC Text-Code V0 64-Bit
label: text_code_v0_64
mode: text
function: twinspect.algos.iscc:text_code_v0_64
dependencies:
- iscc-sdk==0.5.9
- name: ISCC Image-Code V0 64-Bit
label: image_code_v0_64
mode: image
function: twinspect.algos.iscc:image_code_v0_64
dependencies:
- iscc-sdk==0.5.9
- name: ISCC Audio-Code V0 64-Bit
label: audio_code_v0_64
mode: audio
function: twinspect.algos.iscc:audio_code_v0_64
dependencies:
- iscc-sdk==0.5.9
- name: ISCC Video-Code V0 64-Bit
label: video_code_v0_64
mode: video
function: twinspect.algos.iscc:video_code_v0_64
dependencies:
- iscc-sdk==0.5.9
datasets:
- name: STLIB-2000
label: stlib_2000
info: The STLIB-2000 is a real-world dataset of 2000 commercial E-Books where each title has
an EPUB and PDF version. The data has been generously provided by [StreetLib](https://www.streetlib.com/).
Because the ISCC-SDK does not support OCR yet, titles with image-only E-Books have been removed
before benchmarking.
url: https://www.streetlib.com
mode: text
installer: twinspect.datasets.dummy:install
- name: MIRFLICKR-MFND
label: mirflickr_mfnd
info: The MFND benchmark ([Connor et al., 2015](http://dx.doi.org/10.5220/0005359705650571))
is a subset of the real-world MIRFLICKR dataset ([Huiskes & Lew, 2008](https://doi.org/10.1145/1460096.1460104))
with [annotations](http://www.mir-flickr-near-duplicates.appspot.com/) for near duplicates
(IND). The Twinspect benchmark automatically downloads and reproduces the tested dataset.
url: https://mfnd.similarity.eu/data/truthfiles/polito/IND_clusters.txt
mode: image
installer: twinspect.datasets.mfnd:install
- name: ISCC-FMA-10k
label: iscc_fma_10k
info: The ISCC-FMA-10k benchmark is a subset of [Free Music Archive Dataset](https://doi.org/10.48550/arXiv.1612.01840).
The subset is generated by collecting 5000 random audio files (longer than 60 seconds). Additionaly
10 synthetic transformations are applied to a random selection 500 of the audio files. The
Twinspect benchmark automatically downloads and reproduces the tested dataset.
url: https://os.unil.cloud.switch.ch/fma/fma_full.zip
mode: audio
installer: twinspect.datasets.fma:install
samples: 5000
clusters: 500
seed: 0
transformations:
- name: Trim 1 Second
label: trim-1s-both
info: Remove 1 seconds of audio from start and end
mode: audio
function: twinspect.transformations.audio:trim
params:
- 1
- both
- name: Trim 5 Seconds
label: trim-5s-both
info: Remove 5 seconds of audio from start and end
mode: audio
function: twinspect.transformations.audio:trim
params:
- 5
- both
- name: Fade 8 Seconds
label: fade-8s-both
info: Fade in/out 8 seconds at start and end
mode: audio
function: twinspect.transformations.audio:fade
params:
- 8
- both
- name: Transcode MP3 128kbps
label: transcode-mp3-128kbps
info: Transcode audio to 128kbps MP3
mode: audio
function: twinspect.transformations.audio:transcode
params:
- mp3
- 128
- name: Transcode OGG 64kbps
label: transcode-ogg-64kbps
info: Transcode audio to 64kbps OGG
mode: audio
function: twinspect.transformations.audio:transcode
params:
- ogg
- 64
- name: Transcode AAC 32kbps
label: transcode-aac-32kbps
info: Transcode audio to 32kbps AAC
mode: audio
function: twinspect.transformations.audio:transcode
params:
- aac
- 32
- name: Compress
label: compress-medium
info: Apply audio compression (attack 10, release 200, ratio 3, threshold -20)
mode: audio
function: twinspect.transformations.audio:compress
params:
- medium
- name: Equalize
label: equalize
info: Equalize audio (ffmpeg equalizer=f=1000:t=o:w=200:g=10)
mode: audio
function: twinspect.transformations.audio:equalize
- name: Echo
label: echo
info: Apply echo effect (ffmpeg aecho=0.8:0.7:60:0.2)
mode: audio
function: twinspect.transformations.audio:echo
- name: Loudness Normalization
label: loudnorm
info: Apply loudness normalization (ffmpeg loudnorm=I=-16:TP=-1.5:LRA=11)
mode: audio
function: twinspect.transformations.audio:loudnorm
metrics:
- name: Execution Speed
label: speed
function: twinspect.metrics.speed:speed
- name: Effectiveness (Precission, Recall, F1-Score)
label: effectiveness
function: twinspect.metrics.eff:effectiveness
- name: Robustness against transformations
label: robustness
function: twinspect.metrics.robustness:robustness
- name: Distribution (All-Pairs Hamming Distances)
label: distribution
function: twinspect.metrics.distribution:distribution
benchmarks:
- algorithm_label: text_code_v0_64
dataset_label: stlib_2000
metric_labels:
- speed
- effectiveness
- distribution
active: true
- algorithm_label: image_code_v0_64
dataset_label: mirflickr_mfnd
metric_labels:
- speed
- effectiveness
- distribution
active: true
- algorithm_label: audio_code_v0_64
dataset_label: iscc_fma_10k
metric_labels:
- speed
- effectiveness
- robustness
- distribution
active: true