-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
242 lines (191 loc) · 8.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import copy
import glob
import os
import time
from collections import deque
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from a2c_ppo_acktr_article import algo, utils
from a2c_ppo_acktr_article.algo import gail
from a2c_ppo_acktr_article.algo.A2C_ACKTR import A2C_ACKTR
from a2c_ppo_acktr_article.algo.ppo import PPO
from a2c_ppo_acktr_article.arguments import get_args
from a2c_ppo_acktr_article.envs import make_vec_envs
from a2c_ppo_acktr_article.model_CR import Policy
from a2c_ppo_acktr_article.storage import RolloutStorage
from a2c_ppo_acktr_article.action_scaling import scale_action
from evaluation_article import evaluate
def main():
args = get_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if args.cuda and torch.cuda.is_available() and args.cuda_deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
log_dir = os.path.expanduser(args.log_dir)
eval_log_dir = log_dir + "_eval"
utils.cleanup_log_dir(log_dir)
utils.cleanup_log_dir(eval_log_dir)
torch.set_num_threads(1)
device = torch.device("cuda:0" if args.cuda else "cpu")
envs = make_vec_envs(args.env_name, args.seed, args.num_processes,
args.gamma, args.log_dir, device, False)
# Merging brake and throttle for CarRacing-v0
if args.env_name == 'CarRacing-v0' and args.throttle_brake_merge:
envs.action_space.shape = (2,)
#input('\n\n\n We are here \n\n\n')
training_score = {'step': [],
'avg_reward': []}
actor_critic = Policy(
envs.observation_space.shape,
envs.action_space,
base_kwargs={'recurrent': args.recurrent_policy})
actor_critic.to(device)
"""
dir_path = '/home/giovani/article/trained_models/ppo/'
file_path = 'Starting_CarRacing-v0_seed=2_nsteps_=500_d=normal_nup=1249.pt'
actor_critic, _, _ = torch.load(dir_path + file_path, map_location='cuda:0')
print(f'---- Loading pre-trainded model ----')
print(f'{actor_critic}')
print(f'------------------------------------')
"""
if args.algo == 'a2c':
agent = A2C_ACKTR(
actor_critic,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
alpha=args.alpha,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'ppo':
agent = PPO(
actor_critic,
args.clip_param,
args.ppo_epoch,
args.num_mini_batch,
args.value_loss_coef,
args.entropy_coef,
lr=args.lr,
eps=args.eps,
max_grad_norm=args.max_grad_norm)
elif args.algo == 'acktr':
agent = algo.A2C_ACKTR(
actor_critic, args.value_loss_coef, args.entropy_coef, acktr=True)
if args.gail:
assert len(envs.observation_space.shape) == 1
discr = gail.Discriminator(
envs.observation_space.shape[0] + envs.action_space.shape[0], 100,
device)
file_name = os.path.join(
args.gail_experts_dir, "trajs_{}.pt".format(
args.env_name.split('-')[0].lower()))
expert_dataset = gail.ExpertDataset(
file_name, num_trajectories=4, subsample_frequency=20)
drop_last = len(expert_dataset) > args.gail_batch_size
gail_train_loader = torch.utils.data.DataLoader(
dataset=expert_dataset,
batch_size=args.gail_batch_size,
shuffle=True,
drop_last=drop_last)
rollouts = RolloutStorage(args.num_steps, args.num_processes,
envs.observation_space.shape, envs.action_space,
actor_critic.recurrent_hidden_state_size)
episode_rewards = deque(maxlen=10)
start = time.time()
num_updates = int(
args.num_env_steps) // args.num_steps // args.num_processes
obs = envs.reset()
rollouts.obs[0].copy_(obs)
rollouts.to(device)
for j in range(num_updates):
if args.use_linear_lr_decay:
# decrease learning rate linearly
utils.update_linear_schedule(
agent.optimizer, j, num_updates,
agent.optimizer.lr if args.algo == "acktr" else args.lr)
for step in range(args.num_steps):
# Sample actions
with torch.no_grad():
value, action, action_log_prob, recurrent_hidden_states = actor_critic.act(
rollouts.obs[step], rollouts.recurrent_hidden_states[step],
rollouts.masks[step])
action_env = scale_action(action, args)
# Obser reward and next obs
obs, reward, done, infos = envs.step(action_env)
#--- RENDERS
#envs.render()
for info in infos:
if 'episode' in info.keys():
episode_rewards.append(info['episode']['r'])
# If done then clean the history of observations.
masks = torch.FloatTensor(
[[0.0] if done_ else [1.0] for done_ in done])
bad_masks = torch.FloatTensor(
[[0.0] if 'bad_transition' in info.keys() else [1.0]
for info in infos])
rollouts.insert(obs, recurrent_hidden_states, action,
action_log_prob, value, reward, masks, bad_masks)
with torch.no_grad():
next_value = actor_critic.get_value(
rollouts.obs[-1], rollouts.recurrent_hidden_states[-1],
rollouts.masks[-1]).detach()
if args.gail:
if j >= 10:
envs.venv.eval()
gail_epoch = args.gail_epoch
if j < 10:
gail_epoch = 100 # Warm up
for _ in range(gail_epoch):
discr.update(gail_train_loader, rollouts,
utils.get_vec_normalize(envs)._obfilt)
for step in range(args.num_steps):
rollouts.rewards[step] = discr.predict_reward(
rollouts.obs[step], rollouts.actions[step], args.gamma,
rollouts.masks[step])
rollouts.compute_returns(next_value, args.use_gae, args.gamma,
args.gae_lambda, args.use_proper_time_limits)
value_loss, action_loss, dist_entropy = agent.update(rollouts)
rollouts.after_update()
training_score['step'].append((j + 1) * args.num_processes * args.num_steps)
training_score['avg_reward'].append(np.mean(episode_rewards))
# save for every interval-th episode or for the last epoch
if (j % args.save_interval == 0
or j == num_updates-1) and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.algo)
try:
os.makedirs(save_path)
except OSError:
pass
file_name = args.env_name+ '_seed='+str(args.seed)+'_nsteps_='+str(args.num_steps)+"_d="+str(args.distribution)+ '_nup=' + str(j) + ".pt"
torch.save([
actor_critic,
getattr(utils.get_vec_normalize(envs), 'obs_rms', None),
args
], os.path.join(save_path, file_name))
path_scores =os.path.join(save_path, 'training_score_in' + str(len(episode_rewards))+'_episodes'+file_name)
torch.save(training_score, path_scores)
if j % args.log_interval == 0 and len(episode_rewards) > 1:
total_num_steps = (j + 1) * args.num_processes * args.num_steps
end = time.time()
print(
"Updates {}, num timesteps {}, FPS {} \n Last {} training episodes: mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}\n"
.format(j, total_num_steps,
int(total_num_steps / (end - start)),
len(episode_rewards), np.mean(episode_rewards),
np.median(episode_rewards), np.min(episode_rewards),
np.max(episode_rewards), dist_entropy, value_loss,
action_loss))
if (args.eval_interval is not None and len(episode_rewards) > args.eval_interval
and j % args.eval_interval == 0):
actor_critic, obs_rms = torch.load(file_name)
evaluate(actor_critic, obs_rms, args.env_name, args.seed,
args.num_processes, eval_log_dir, device)
envs.close()
print(f'--- END ---')
if __name__ == "__main__":
main()