forked from Samsung/veles.znicz
-
Notifications
You must be signed in to change notification settings - Fork 0
/
image_saver.py
261 lines (224 loc) · 9.72 KB
/
image_saver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# -*- coding: utf-8 -*-
"""
.. invisible:
_ _ _____ _ _____ _____
| | | | ___| | | ___/ ___|
| | | | |__ | | | |__ \ `--.
| | | | __|| | | __| `--. \
\ \_/ / |___| |___| |___/\__/ /
\___/\____/\_____|____/\____/
Created on Aug 20, 2013
ImageSaver unit.
███████████████████████████████████████████████████████████████████████████████
Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
███████████████████████████████████████████████████████████████████████████████
"""
from __future__ import division
import glob
import numpy
import os
from PIL import Image
from zope.interface import implementer
import veles.config as config
from veles.error import BadFormatError
from veles.distributable import TriviallyDistributable
from veles.units import Unit, IUnit
@implementer(IUnit)
class ImageSaver(Unit, TriviallyDistributable):
"""Saves input to pngs in the supplied directory.
Will remove all existing png files in the supplied directory.
Attributes:
out_dirs: output directories by minibatch_class where to save png.
input: batch with input samples.
output: batch with corresponding output samples (may be None).
target: batch with corresponding target samples (may be None).
indices: sample indices.
labels: sample labels.
max_idx: indices of element with maximum value for each sample.
Remarks:
if max_idx is not None:
Softmax classifier is assumed and only failed samples
will be saved.
else:
MSE task is assumed and output and target
should be None or not None both simultaneously.
"""
def __init__(self, workflow, **kwargs):
super(ImageSaver, self).__init__(workflow, **kwargs)
self.out_dirs = kwargs.get(
"out_dirs", [os.path.join(config.root.common.dirs.cache,
"tmpimg/test"),
os.path.join(config.root.common.dirs.cache,
"tmpimg/validation"),
os.path.join(config.root.common.dirs.cache,
"tmpimg/train")])
self.limit = kwargs.get("limit", 100)
self.output = None # memory.Array()
self.target = None # memory.Array()
self.max_idx = None # memory.Array()
self._last_save_time = 0
self.save_time = 0
self._n_saved = [0, 0, 0]
self._remembers_gates = False
self.color_space = kwargs.get("color_space", "RGB")
self.demand("input", "indices", "labels",
"minibatch_class", "minibatch_size")
@staticmethod
def as_image(inp):
if len(inp.shape) == 1:
return None
elif len(inp.shape) == 2:
if 1 in inp.shape:
return None
return inp.reshape(inp.shape[0], inp.shape[1])
elif len(inp.shape) == 3:
if inp.shape[2] == 3:
return inp
if inp.shape[0] == 3:
return inp.transpose(1, 2, 0)
if inp.shape[2] == 4:
return inp[:, :, 0:3]
else:
raise BadFormatError()
def initialize(self, **kwargs):
pass
def get_list_indices_to_save(self):
indices_to_save = []
for image_index in range(self.minibatch_size):
true_label = self.labels[image_index]
if self.max_idx is not None:
prediction_label = self.max_idx[image_index]
if prediction_label != true_label:
indices_to_save.append(image_index)
else:
indices_to_save.append(image_index)
return indices_to_save
def create_directory(self, dirnme):
try:
os.makedirs(dirnme, mode=0o775)
except OSError:
pass
def remove_old_pictures(self):
if self._last_save_time < self.save_time:
self._last_save_time = self.save_time
for i in range(len(self._n_saved)):
self._n_saved[i] = 0
for dirnme in self.out_dirs:
files = glob.glob("%s/*.png" % dirnme)
for file in files:
try:
os.unlink(file)
except OSError:
pass
def save_image(self, image, path):
image_to_save = Image.fromarray(image)
try:
image_to_save.save(path)
except ValueError:
self.warning(
"Could not save image to %s. Image does not have a suitable"
"array shape for any mode. Image shape: %s"
% (path, str(image.shape)))
except OSError:
self.warning("Could not save image to %s" % (path))
def normalize_image(self, image, colorspace=None):
"""Normalizes numpy array to interval [0, 255].
"""
float_image = image.astype(numpy.float32)
if float_image.__array_interface__[
"data"][0] == image.__array_interface__["data"][0]:
float_image = float_image.copy()
float_image -= float_image.min()
max_value = float_image.max()
if max_value:
max_value /= 255.0
float_image /= max_value
else:
float_image[:] = 127.5
normalized_image = float_image.astype(numpy.uint8)
if (colorspace != "RGB" and len(normalized_image.shape) == 3
and normalized_image.shape[2] == 3):
import cv2
normalized_image = cv2.cvtColor(
normalized_image, getattr(cv2, "COLOR_" + colorspace + "2RGB"))
return normalized_image
def read_data(self):
for data in (self.output, self.max_idx, self.target):
if data is not None:
data.map_read()
for data in (self.indices, self.input, self.labels):
data.map_read()
def run(self):
self.read_data()
for dirnme in self.out_dirs:
self.create_directory(dirnme)
self.remove_old_pictures()
if self._n_saved[self.minibatch_class] >= self.limit:
return
self.save_images(self.get_list_indices_to_save())
def get_paths_and_save_image(self, image_index):
input_image = ImageSaver.as_image(self.input[image_index])
true_label = self.labels[image_index]
index = self.indices.mem[image_index]
if self.max_idx is not None:
prediction_label = self.max_idx[image_index]
output_image = self.output[image_index]
out_path_dir = self.out_dirs[self.minibatch_class]
tail_file_name = "%d_as_%d.%.0fpt.%d.png" % (
true_label, prediction_label,
output_image[prediction_label], index)
target_image = None
else:
out_path_dir = os.path.join(
self.out_dirs[self.minibatch_class], "%d" % index)
if self.output is not None and self.target is not None:
output_image, target_image = (
ImageSaver.as_image(v[image_index]) for v in
(self.output, self.target))
if output_image is None:
assert target_image is None, \
"Output shape is %s while target shape is %s" % (
self.output.shape[1:], target_image.shape)
else:
output_image = output_image.reshape(target_image.shape)
mse = numpy.linalg.norm(
self.output.mem - self.target.mem) / input_image.size
else:
output_image = None
target_image = None
mse = None
tail_file_name = "%.6f_%d_%d.png" % (mse, true_label, index)
self.create_directory(out_path_dir)
out_path_input_image, out_path_output_image, out_path_target = (
os.path.join(out_path_dir, m % tail_file_name) for m in
("input_image_%s", "output_image_%s", "target_%s"))
self.save_image(
self.normalize_image(input_image, self.color_space),
out_path_input_image)
if output_image is not None and self.max_idx is None:
self.save_image(
self.normalize_image(output_image, self.color_space),
out_path_output_image)
if target_image is not None:
self.save_image(
self.normalize_image(target_image, self.color_space),
out_path_target)
self._n_saved[self.minibatch_class] += 1
def save_images(self, indices_to_save):
for image_index in indices_to_save:
self.get_paths_and_save_image(image_index)
if self._n_saved[self.minibatch_class] >= self.limit:
return