|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stdout", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "hdf5 is not supported on this machine (please install/reinstall h5py for optimal experience)\n" |
| 13 | + ] |
| 14 | + } |
| 15 | + ], |
| 16 | + "source": [ |
| 17 | + "import glob\n", |
| 18 | + "import sys\n", |
| 19 | + "import math\n", |
| 20 | + "import numpy as np\n", |
| 21 | + "import tensorflow as tf\n", |
| 22 | + "from random import shuffle\n", |
| 23 | + "from random import seed\n", |
| 24 | + "\n", |
| 25 | + "from device import Device\n", |
| 26 | + "from stroke import Stroke\n", |
| 27 | + "from sample import Sample\n", |
| 28 | + "from datetime import datetime\n", |
| 29 | + "import pickle\n", |
| 30 | + "import sklearn.utils\n", |
| 31 | + "import statistics\n", |
| 32 | + "import tflearn" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 2, |
| 38 | + "metadata": { |
| 39 | + "collapsed": true |
| 40 | + }, |
| 41 | + "outputs": [], |
| 42 | + "source": [ |
| 43 | + "class MySample:\n", |
| 44 | + " def __init__(self, events, sequence_counter, count, inch, jump):\n", |
| 45 | + " self.angle = 0\n", |
| 46 | + " self.inch = inch\n", |
| 47 | + "\n", |
| 48 | + " self.x = []\n", |
| 49 | + " self.y = []\n", |
| 50 | + " self.time = []\n", |
| 51 | + " for i in range(sequence_counter, sequence_counter+count):\n", |
| 52 | + " if i >= jump-1:\n", |
| 53 | + " self.x.append(events[jump-1][0])\n", |
| 54 | + " self.y.append(events[jump-1][1])\n", |
| 55 | + " \n", |
| 56 | + " if i == sequence_counter:\n", |
| 57 | + " self.time.append(17)\n", |
| 58 | + " else:\n", |
| 59 | + " self.time.append(events[jump-1][3]-events[jump-2][3])\n", |
| 60 | + " else:\n", |
| 61 | + " self.x.append(events[i][0])\n", |
| 62 | + " self.y.append(events[i][1])\n", |
| 63 | + " if i == sequence_counter:\n", |
| 64 | + " self.time.append(17)\n", |
| 65 | + " else:\n", |
| 66 | + " self.time.append(events[i][3]-events[i-1][3])\n", |
| 67 | + "\n", |
| 68 | + " def derivate(self):\n", |
| 69 | + " x_der = []\n", |
| 70 | + " y_der = []\n", |
| 71 | + " time_der = []\n", |
| 72 | + " for i in range(len(self.x)-1):\n", |
| 73 | + " x_der.append(self.x[i+1]-self.x[i])\n", |
| 74 | + " y_der.append(self.y[i+1]-self.y[i])\n", |
| 75 | + " time_der.append(self.time[i+1])\n", |
| 76 | + " self.x = x_der\n", |
| 77 | + " self.y = y_der\n", |
| 78 | + " self.time = time_der\n", |
| 79 | + "\n", |
| 80 | + " def getAngle(self, startIndex, endIndex):\n", |
| 81 | + " myX = self.x[endIndex]-self.x[startIndex]\n", |
| 82 | + " myY = self.y[endIndex]-self.y[startIndex]\n", |
| 83 | + " return math.atan2(myX, myY)\n", |
| 84 | + "\n", |
| 85 | + " def rotate(self, angle, originIndex):\n", |
| 86 | + " self.rotation = angle\n", |
| 87 | + "\n", |
| 88 | + " cs = math.cos(angle)\n", |
| 89 | + " sn = math.sin(angle)\n", |
| 90 | + " for i in range(len(self.x)):\n", |
| 91 | + " myX = (self.x[i]-self.x[originIndex]) * cs -\\\n", |
| 92 | + " (self.y[i]-self.y[originIndex])*sn\n", |
| 93 | + " myY = (self.x[i]-self.x[originIndex]) * sn +\\\n", |
| 94 | + " (self.y[i]-self.y[originIndex])*cs\n", |
| 95 | + " self.x[i] = myX + self.x[originIndex]\n", |
| 96 | + " self.y[i] = myY + self.y[originIndex]" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "code", |
| 101 | + "execution_count": 3, |
| 102 | + "metadata": { |
| 103 | + "collapsed": true |
| 104 | + }, |
| 105 | + "outputs": [], |
| 106 | + "source": [ |
| 107 | + "def loadStudyData(path, inType, sampleLength):\n", |
| 108 | + " file_list = []\n", |
| 109 | + " name = \"xxx\"\n", |
| 110 | + " if inType == 1: name = \"FittsTasks-participant\"\n", |
| 111 | + " elif inType == 2: name = \"PaintTasks-participant\"\n", |
| 112 | + " elif inType == 3: name = \"WriteTasks-participant\"\n", |
| 113 | + "\n", |
| 114 | + " fileName = path+name\n", |
| 115 | + "\n", |
| 116 | + " for index in range(1,9):\n", |
| 117 | + " file_list.append(fileName+str(index)+\".txt\")\n", |
| 118 | + "\n", |
| 119 | + " samples = []\n", |
| 120 | + "\n", |
| 121 | + " for fileName in file_list:\n", |
| 122 | + " events = []\n", |
| 123 | + " f = open(fileName, 'r')\n", |
| 124 | + " for line in f:\n", |
| 125 | + " tokens = line.split(';')\n", |
| 126 | + " events.append([float(tokens[2]), float(tokens[3]), float(tokens[4]), int(tokens[1]), int(tokens[5])])\n", |
| 127 | + "\n", |
| 128 | + " seqCount = 0\n", |
| 129 | + " for i, event in enumerate(events):\n", |
| 130 | + " jump = i+sampleLength+1\n", |
| 131 | + "\n", |
| 132 | + " for j in range(i, i+sampleLength):\n", |
| 133 | + " if j >= len(events) or events[j][4] is not 2:\n", |
| 134 | + " jump = j\n", |
| 135 | + " break\n", |
| 136 | + " if jump-i > 11:\n", |
| 137 | + " sample = MySample(events, i, sampleLength, 7, jump)\n", |
| 138 | + "\n", |
| 139 | + " sample.angle = sample.getAngle(9, 10) + math.radians(45)\n", |
| 140 | + " sample.rotate(sample.angle, 10)\n", |
| 141 | + "\n", |
| 142 | + " sample.derivate()\n", |
| 143 | + "\n", |
| 144 | + " sameTime = 0\n", |
| 145 | + " for a in range(len(sample.time)):\n", |
| 146 | + " if sample.time[a] < 1:\n", |
| 147 | + " sameTime = 1\n", |
| 148 | + " if sameTime == 0:\n", |
| 149 | + " samples.append(sample)\n", |
| 150 | + "\n", |
| 151 | + " return samples" |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "code", |
| 156 | + "execution_count": 4, |
| 157 | + "metadata": { |
| 158 | + "collapsed": true |
| 159 | + }, |
| 160 | + "outputs": [], |
| 161 | + "source": [ |
| 162 | + "def buildLSTM():\n", |
| 163 | + " net = tflearn.input_data([None, 10, 3], name=\"input1\")\n", |
| 164 | + " net = tflearn.lstm(net, 512, return_seq=True, weights_init=\"xavier\")\n", |
| 165 | + " net = tflearn.dropout(net, 0.75)\n", |
| 166 | + " net = tflearn.lstm(net, 256, weights_init=\"xavier\")\n", |
| 167 | + " net = tflearn.dropout(net, 0.75)\n", |
| 168 | + " net = tflearn.fully_connected(net, 2, activation='linear', weights_init=\"xavier\")\n", |
| 169 | + " \n", |
| 170 | + " net = tflearn.regression(net, optimizer='adam', learning_rate=0.0001, loss='mean_square')\n", |
| 171 | + "\n", |
| 172 | + " return tflearn.DNN(net)\n", |
| 173 | + "\n", |
| 174 | + "def buildLSTMVectors(samples, steps):\n", |
| 175 | + " inStudyVec = []\n", |
| 176 | + " outStudyVec = []\n", |
| 177 | + " \n", |
| 178 | + " for sample in samples:\n", |
| 179 | + " line = []\n", |
| 180 | + " for i in range(10):\n", |
| 181 | + " line.append([sample.x[i], sample.y[i], sample.time[i+steps]])\n", |
| 182 | + " inStudyVec.append(line)\n", |
| 183 | + " \n", |
| 184 | + " x = 0\n", |
| 185 | + " y = 0\n", |
| 186 | + " for i in range(0,steps):\n", |
| 187 | + " x = x + sample.x[10 + i]\n", |
| 188 | + " y = y + sample.y[10 + i]\n", |
| 189 | + " outStudyVec.append([x, y])\n", |
| 190 | + " inStudyVec = np.array(inStudyVec)\n", |
| 191 | + " outStudyVec = np.array(outStudyVec)\n", |
| 192 | + "\n", |
| 193 | + " return inStudyVec, outStudyVec\n", |
| 194 | + "\n", |
| 195 | + "def getLSTMPerformance(model, inVec, outVec, steps):\n", |
| 196 | + " batch_size = 500\n", |
| 197 | + " total_batch = int(len(inVec)/batch_size)\n", |
| 198 | + " avgDist = 0\n", |
| 199 | + " for i in range(int(len(inVec)/batch_size)+1):\n", |
| 200 | + " batch_x = inVec[i*batch_size:min((i+1)*batch_size, len(inVec))]\n", |
| 201 | + " batch_y = outVec[i*batch_size:min((i+1)*batch_size, len(inVec))]\n", |
| 202 | + "\n", |
| 203 | + " myY = np.array(model.predict(batch_x))\n", |
| 204 | + "\n", |
| 205 | + " for j in range(len(batch_x)): \n", |
| 206 | + " dist = (batch_y[j][0]-myY[j][0])*(batch_y[j][0]-myY[j][0])\n", |
| 207 | + " dist = dist + (batch_y[j][1]-myY[j][1])*(batch_y[j][1]-myY[j][1])\n", |
| 208 | + " dist = math.sqrt(dist)\n", |
| 209 | + " avgDist = avgDist + dist\n", |
| 210 | + " return avgDist/len(inVec)" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "code", |
| 215 | + "execution_count": 5, |
| 216 | + "metadata": {}, |
| 217 | + "outputs": [ |
| 218 | + { |
| 219 | + "name": "stdout", |
| 220 | + "output_type": "stream", |
| 221 | + "text": [ |
| 222 | + "INFO:tensorflow:Restoring parameters from /home/henzens/jupyter/touch/models/LSTM 33.tflearn\n", |
| 223 | + "33.33 ms draw 7.4 px\n", |
| 224 | + "33.33 ms write 13.2 px\n", |
| 225 | + "33.33 ms fitts 5.1 px\n", |
| 226 | + "33.33 ms average 8.6 px\n", |
| 227 | + "\n", |
| 228 | + "INFO:tensorflow:Restoring parameters from /home/henzens/jupyter/touch/models/LSTM 67.tflearn\n", |
| 229 | + "66.67 ms draw 15.6 px\n", |
| 230 | + "66.67 ms write 31.9 px\n", |
| 231 | + "66.67 ms fitts 13.0 px\n", |
| 232 | + "66.67 ms average 20.2 px\n", |
| 233 | + "\n", |
| 234 | + "INFO:tensorflow:Restoring parameters from /home/henzens/jupyter/touch/models/LSTM 100.tflearn\n", |
| 235 | + "100.00 ms draw 25.4 px\n", |
| 236 | + "100.00 ms write 54.3 px\n", |
| 237 | + "100.00 ms fitts 23.0 px\n", |
| 238 | + "100.00 ms average 34.2 px\n", |
| 239 | + "\n" |
| 240 | + ] |
| 241 | + } |
| 242 | + ], |
| 243 | + "source": [ |
| 244 | + "tasks = [\"fitts\", \"draw\", \"write\"]\n", |
| 245 | + "time = [\"LSTM 33\", \"LSTM 67\", \"LSTM 100\"]\n", |
| 246 | + " \n", |
| 247 | + "model = buildLSTM()\n", |
| 248 | + "for j1, store in enumerate(time):\n", |
| 249 | + " j = (j1+1) * 2\n", |
| 250 | + " model.load(\"./models/\"+store+'.tflearn', False)\n", |
| 251 | + " avgError = 0\n", |
| 252 | + " for i in range(1, 4):\n", |
| 253 | + " samples = loadStudyData('./data/', i, 11+j)\n", |
| 254 | + " inStudyVec, outStudyVec = buildLSTMVectors(samples, j)\n", |
| 255 | + " perf = getLSTMPerformance(model, inStudyVec, outStudyVec, j)\n", |
| 256 | + " avgError = avgError + perf\n", |
| 257 | + " \n", |
| 258 | + " print(\"{:.2f}\".format(j*16.6666), \"ms \", tasks[i-1], \"{:.1f}\".format(perf), \"px\")\n", |
| 259 | + " print(\"{:.2f}\".format(j*16.6666), \"ms \", \"average\", \"{:.1f}\".format(avgError/3), \"px\\n\")" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "code", |
| 264 | + "execution_count": null, |
| 265 | + "metadata": { |
| 266 | + "collapsed": true |
| 267 | + }, |
| 268 | + "outputs": [], |
| 269 | + "source": [] |
| 270 | + }, |
| 271 | + { |
| 272 | + "cell_type": "code", |
| 273 | + "execution_count": null, |
| 274 | + "metadata": { |
| 275 | + "collapsed": true |
| 276 | + }, |
| 277 | + "outputs": [], |
| 278 | + "source": [] |
| 279 | + } |
| 280 | + ], |
| 281 | + "metadata": { |
| 282 | + "kernelspec": { |
| 283 | + "display_name": "Python 3", |
| 284 | + "language": "python", |
| 285 | + "name": "python3" |
| 286 | + }, |
| 287 | + "language_info": { |
| 288 | + "codemirror_mode": { |
| 289 | + "name": "ipython", |
| 290 | + "version": 3 |
| 291 | + }, |
| 292 | + "file_extension": ".py", |
| 293 | + "mimetype": "text/x-python", |
| 294 | + "name": "python", |
| 295 | + "nbconvert_exporter": "python", |
| 296 | + "pygments_lexer": "ipython3", |
| 297 | + "version": "3.6.1" |
| 298 | + } |
| 299 | + }, |
| 300 | + "nbformat": 4, |
| 301 | + "nbformat_minor": 2 |
| 302 | +} |
0 commit comments