|
| 1 | +#!/usr/bin/env python |
| 2 | + |
| 3 | +import sys |
| 4 | +import pyhdk |
| 5 | +import pandas as pd |
| 6 | +import numpy as np |
| 7 | +import time |
| 8 | + |
| 9 | + |
| 10 | +def compare_tables(left_df: pd.DataFrame, right_df: pd.DataFrame): |
| 11 | + try_to_guess = True |
| 12 | + left_cols = left_df.columns.to_list() |
| 13 | + right_cols = right_df.columns.to_list() |
| 14 | + left_cols.sort() |
| 15 | + right_cols.sort() |
| 16 | + |
| 17 | + diff_idx = [ |
| 18 | + idx for idx, col_name in enumerate(right_cols) if col_name != left_cols[idx] |
| 19 | + ] |
| 20 | + |
| 21 | + print("compare lists: ", diff_idx) |
| 22 | + drop_left = [] |
| 23 | + drop_right = [] |
| 24 | + for drop_idx in diff_idx: |
| 25 | + drop_left += [left_cols[drop_idx]] |
| 26 | + drop_right += [right_cols[drop_idx]] |
| 27 | + if try_to_guess: |
| 28 | + right_df = right_df.rename(columns=dict(zip(drop_right, drop_left))) |
| 29 | + else: |
| 30 | + print("cols: ", left_cols, " drops: ", drop_left) |
| 31 | + print("cols: ", right_cols, " drops: ", drop_right) |
| 32 | + left_df = left_df.drop(columns=drop_left) |
| 33 | + right_df = right_df.drop(columns=drop_right) |
| 34 | + |
| 35 | + left_cols = left_df.columns.to_list() |
| 36 | + right_cols = right_df.columns.to_list() |
| 37 | + left_cols.sort() |
| 38 | + right_cols.sort() |
| 39 | + |
| 40 | + print("cols: r - ", right_cols, " l - ", left_cols) |
| 41 | + |
| 42 | + assert left_cols == right_cols, "Table column names are different" |
| 43 | + |
| 44 | + left_df.sort_values(by=left_cols, inplace=True) |
| 45 | + right_df.sort_values(by=left_cols, inplace=True) |
| 46 | + for col in left_df.columns: |
| 47 | + if left_df[col].dtype in ["category"]: |
| 48 | + left_df[col] = left_df[col].astype("str") |
| 49 | + right_df[col] = right_df[col].astype("str") |
| 50 | + print("l dtypes \n", left_df.dtypes) |
| 51 | + print("r dtypes \n", right_df.dtypes) |
| 52 | + |
| 53 | + print("l size: ", left_df.size, " - r size: ", right_df.size) |
| 54 | + |
| 55 | + left_df = left_df.reset_index(drop=True) |
| 56 | + right_df = right_df.reset_index(drop=True) |
| 57 | + if not all(left_df == right_df): |
| 58 | + mask = left_df == right_df |
| 59 | + print("Mismathed left: ") |
| 60 | + print(left_df[mask]) |
| 61 | + print(" right: ") |
| 62 | + print(left_df[mask]) |
| 63 | + raise RuntimeError("Results mismatched") |
| 64 | + |
| 65 | + |
| 66 | +pyhdk_init_args = {} |
| 67 | +pyhdk_init_args["enable_debug_timer"] = True |
| 68 | +pyhdk_init_args["enable_cpu_groupby_multifrag_kernels"] = False |
| 69 | +# pyhdk_init_args["debug_logs"] = True |
| 70 | +hdk = pyhdk.init(**pyhdk_init_args) |
| 71 | +fragment_size = 4000000 |
| 72 | + |
| 73 | +N = 2 |
| 74 | + |
| 75 | +np.random.seed(1) |
| 76 | +column_list = list() |
| 77 | +for num in range(N): |
| 78 | + df_setup = { |
| 79 | + "column_1": np.random.randint(0, 150, size=(15000)), |
| 80 | + "column_3": np.random.randint(0, 6, size=(15000)), |
| 81 | + "column_5": np.random.randint(0, 10, size=(15000)), |
| 82 | + "A" + str(num): np.random.randint(0, 100, size=(15000)), |
| 83 | + "B" + str(num): np.random.randint(0, 100, size=(15000)), |
| 84 | + "C" + str(num): np.random.randint(0, 100, size=(15000)), |
| 85 | + "D" + str(num): np.random.randint(0, 100, size=(15000)), |
| 86 | + } |
| 87 | + column_list.append(df_setup) |
| 88 | + |
| 89 | +df_list = list() |
| 90 | +for num in range(N): |
| 91 | + df = pd.DataFrame(column_list[num]) |
| 92 | + df_list.append(df) |
| 93 | + |
| 94 | +t1 = time.time() |
| 95 | +for idx, df in enumerate(df_list): |
| 96 | + if idx == 0: |
| 97 | + df_base = df.copy() |
| 98 | + df_base = df_base.to_dict("list") |
| 99 | + else: |
| 100 | + if type(df_base) == dict: |
| 101 | + ht_base = hdk.import_pydict(df_base) |
| 102 | + else: |
| 103 | + ht_base = df_base |
| 104 | + df_r = hdk.import_pydict(df.to_dict("list")) |
| 105 | + df_ans = ht_base.join( |
| 106 | + df_r, |
| 107 | + ["column_1", "column_3", "column_5"], |
| 108 | + ["column_1", "column_3", "column_5"], |
| 109 | + ).run() |
| 110 | + df_base = df_ans.to_arrow().to_pandas().to_dict("list") |
| 111 | +print("Hdk Time:", time.time() - t1) |
| 112 | + |
| 113 | +t2 = time.time() |
| 114 | +for idx, df in enumerate(df_list): |
| 115 | + if idx == 0: |
| 116 | + df_base_pd = df.copy() |
| 117 | + else: |
| 118 | + df_base_pd = pd.merge( |
| 119 | + df_base_pd, |
| 120 | + df, |
| 121 | + left_on=["column_1", "column_3", "column_5"], |
| 122 | + right_on=["column_1", "column_3", "column_5"], |
| 123 | + how="inner", |
| 124 | + ) |
| 125 | +print("Pandas Time:", time.time() - t2) |
| 126 | + |
| 127 | +print("[hdk] shape: ", pd.DataFrame(df_base).shape) |
| 128 | +print("[ pd] shape: ", df_base_pd.shape) |
| 129 | +print("compare: ") |
| 130 | +compare_tables(pd.DataFrame(df_base), df_base_pd) |
0 commit comments