-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdatasets_mae.py
109 lines (90 loc) · 3.12 KB
/
datasets_mae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import numpy as np
import pytorch_lightning as pl
import torch
from PIL import Image
from timm.data.transforms import RandomResizedCropAndInterpolation, ToNumpy
from torchvision import datasets, transforms
IMAGENET_MEAN_PER_CHANNEL = (0.485, 0.456, 0.406)
IMAGENET_STD_PER_CHANNEL = (0.229, 0.224, 0.225)
imagenet_train_dir_path = "path to train dir"
class create_imagenet_DataModule(pl.LightningDataModule):
def __init__(
self,
img_size,
hflip,
interpolation,
batch_size: int = 64,
num_workers: int = 12,
):
super().__init__()
self.transform_train = RGBAugmentation(
img_size=img_size,
hflip=hflip,
interpolation=interpolation,
)
self.batch_size = batch_size
self.num_workers = num_workers
# for CIFAR dataset
# self.dataset_train = datasets.CIFAR100('/path/to/save', train=True, transform=self.transform_train, download=True)
# for ImageNet-1k dataset
self.dataset_train = datasets.ImageFolder(
imagenet_train_dir_path, transform=self.transform_train
)
def train_dataloader(self):
return torch.utils.data.DataLoader(
self.dataset_train,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
pin_memory=False,
drop_last=True,
)
def load_DataModule(
batch_size: int = 128,
num_workers: int = 1,
img_size=224,
hflip=0.5,
interpolation="bicubic",
) -> pl.LightningDataModule:
"""Load the Imagenet dataset."""
return create_imagenet_DataModule(
img_size, hflip, interpolation, batch_size, num_workers
)
class RGBAugmentation:
"""Transformations for standard RBG images"""
def __init__(
self,
img_size: int = 224,
hflip: float = 0.5,
scale=None,
ratio=None,
interpolation="bicubic",
use_prefetcher=False,
mean=IMAGENET_MEAN_PER_CHANNEL,
std=IMAGENET_STD_PER_CHANNEL,
):
scale = tuple(scale or (0.2, 1.0)) # default imagenet scale range
ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0)) # default imagenet ratio range
primary_tfl = [
RandomResizedCropAndInterpolation(
img_size, scale=scale, ratio=ratio, interpolation=interpolation
)
]
if hflip > 0.0:
primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)]
final_tfl = []
if use_prefetcher:
# prefetcher and collate will handle tensor conversion and norm
final_tfl += [ToNumpy()]
else:
final_tfl += [
transforms.ToTensor(),
transforms.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
]
self.primary_transform = transforms.Compose(primary_tfl)
self.final_transform = transforms.Compose(final_tfl)
def __call__(self, img) -> torch.Tensor:
img = Image.fromarray(np.asarray(img))
img = self.primary_transform(img)
img = self.final_transform(img)
return img