-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFastVimS.yaml
83 lines (74 loc) · 2.01 KB
/
FastVimS.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
batch_size: 128
num_workers: 12
num_nodes: 1
pl_seed: 0
patch_size: 16 # for now only implemented when both stride and patch size is same
scanpath_type: rowwise # rowwise, colwise
use_norm_after_ssm: True
rotate_every_block: True
collapse_method: mean # mean, max
weight_decay: 0.05
drop_path_rate: 0.05
use_ema_weights: True
ema_decay: 0.9999
training_epochs: 300
warmup_initial_lr: 0.000001
min_lr: 0.00001
scaling_rule: deit
lr: 0.001
warmup_epochs: 5
num_classes: 1000
vim_config:
_target_: models.fastvim.vim_small_patch16_224_final_pool_mean_abs_pos_embed_with_noclstok_div2
pretrained: false
rotate_every_block: ${rotate_every_block}
use_norm_after_ssm: ${use_norm_after_ssm}
num_classes: ${num_classes}
drop_path_rate: ${drop_path_rate}
channels: 3
patch_size: ${patch_size}
stride: ${patch_size}
scanpath_type: ${scanpath_type}
collapse_method: ${collapse_method}
# Configuration for the dataloader
data_config:
_target_: imagenet_classification.datasets_supervised.load_DataModule
batch_size: ${batch_size}
num_workers: ${num_workers}
#augmentation
img_size: 224
hflip: 0.5
vflip: 0.0
eval_crop_ratio: 0.875
color_jitter: 0.3
auto_augment: 'rand-m9-mstd0.5-inc1'
interpolation: 'bicubic'
re_prob: 0.25
re_mode: 'pixel'
re_count: 1
# Configuration for the learning rate schedule
lr_config:
_target_: imagenet_classification.utils.get_lr_scheduler
dataloader: ${data_config}
num_nodes: ${num_nodes}
batch_size: ${batch_size}
scheduling_epochs: ${training_epochs}
warmup_epochs: ${warmup_epochs}
lr: ${lr}
warmup_initial_lr: ${warmup_initial_lr}
min_lr: ${min_lr}
scaling_rule: ${scaling_rule}
model_config:
_target_: imagenet_classification.supervised_imagenet.SupervisedModule
backbone: ${vim_config}
lr_schedule: ${lr_config}
num_classes: ${num_classes}
label_smoothing: 0.1
mixup: 0.8
cutmix: 1.0
mixup_mode: 'batch'
mixup_prob: 1.0
mixup_switch_prob: 0.5
weight_decay: ${weight_decay}
use_ema_weights: ${use_ema_weights}
ema_decay: ${ema_decay}