-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathPermutationAutomation.v
520 lines (430 loc) · 15 KB
/
PermutationAutomation.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
Require Import Bits.
Require Import Modulus.
Require Export PermutationsBase.
Local Open Scope perm_scope.
Local Open Scope nat_scope.
Create HintDb perm_unfold_db.
Create HintDb perm_cleanup_db.
Create HintDb proper_side_conditions_db.
Ltac auto_perm_to n :=
auto n with perm_db perm_bounded_db WF_Perm_db perm_inv_db.
Ltac auto_perm :=
auto 6 with perm_db perm_bounded_db WF_Perm_db perm_inv_db.
Tactic Notation "auto_perm" int_or_var(n) :=
auto_perm_to n.
Tactic Notation "auto_perm" :=
auto_perm 6.
#[export] Hint Resolve
permutation_is_bounded
permutation_is_injective
permutation_is_surjective : perm_db.
#[export] Hint Extern 0 (perm_inj ?n ?f) =>
apply (permutation_is_injective n f) : perm_db.
#[export] Hint Resolve
permutation_compose : perm_db.
#[export] Hint Resolve compose_WF_Perm : WF_Perm_db.
#[export] Hint Rewrite @compose_idn_r @compose_idn_l : perm_cleanup_db.
#[export] Hint Extern 100 (_ < _) =>
show_moddy_lt : perm_bounded_db.
#[export] Hint Extern 0 (funbool_to_nat ?n ?f < ?b) =>
apply (Nat.lt_le_trans (Bits.funbool_to_nat n f) (2^n) b);
[apply (Bits.funbool_to_nat_bound n f) | show_pow2_le] : show_moddy_lt_db.
Ltac show_permutation :=
repeat first [
split
| simpl; solve [auto with perm_db]
| subst; solve [auto with perm_db]
| solve [eauto using permutation_compose with perm_db]
| easy
| lia
].
Ltac cleanup_perm_inv :=
auto with perm_inv_db perm_db perm_bounded_db WF_Perm_db;
autorewrite with perm_inv_db;
auto with perm_inv_db perm_db perm_bounded_db WF_Perm_db.
Ltac cleanup_perm :=
auto with perm_inv_db perm_cleanup_db perm_db perm_bounded_db WF_Perm_db;
autorewrite with perm_inv_db perm_cleanup_db;
auto with perm_inv_db perm_cleanup_db perm_db perm_bounded_db WF_Perm_db.
Ltac solve_modular_permutation_equalities :=
first [cleanup_perm_inv | cleanup_perm];
autounfold with perm_unfold_db;
apply functional_extensionality; let k := fresh "k" in intros k;
bdestructΩ';
solve_simple_mod_eqns.
Lemma compose_id_of_compose_idn {f g : nat -> nat}
(H : (f ∘ g)%prg = (fun n => n)) {k : nat} : f (g k) = k.
Proof.
apply (f_equal_inv k) in H.
easy.
Qed.
Ltac perm_by_inverse finv :=
let tryeasylia := try easy; try lia in
exists finv;
intros k Hk; repeat split;
only 3,4 :
(solve [apply compose_id_of_compose_idn; cleanup_perm; tryeasylia])
|| cleanup_perm; tryeasylia;
only 1,2 : auto with perm_bounded_db; tryeasylia.
Ltac permutation_eq_by_WF_inv_inj f n :=
let tryeasylia := (try easy); (try lia) in
apply (WF_permutation_inverse_injective f n); [
tryeasylia; auto with perm_db |
tryeasylia; auto with WF_Perm_db |
try solve [cleanup_perm; auto] |
try solve [cleanup_perm; auto]];
tryeasylia.
Ltac perm_eq_by_inv_inj f n :=
let tryeasylia := (try easy); (try lia) in
apply (perm_inv_perm_eq_injective f n); [
tryeasylia; auto with perm_db |
try solve [cleanup_perm; auto] |
try solve [cleanup_perm; auto]];
tryeasylia.
Ltac eq_by_WF_perm_eq n :=
apply (eq_of_WF_perm_eq n);
auto with WF_Perm_db.
(* Extending setoid rewriting to work with side conditions *)
Import Setoid Morphisms.
(* Placeholder for irrelevant arguments *)
Definition true_rel {A} : relation A :=
fun _ _ => True.
(* Add Parametric Relation A : A true_rel
reflexivity proved by ltac:(easy)
symmetry proved by ltac:(easy)
transitivity proved by ltac:(easy)
as true_rel_equivalence. *)
#[export] Hint Unfold true_rel : typeclass_instances.
#[export] Instance true_rel_superrel {A} (R : relation A) :
subrelation R true_rel | 10.
Proof.
intros x y H.
constructor.
Qed.
Definition on_predicate_relation_l {A} (P : A -> Prop) (R : relation A)
: relation A :=
fun (x y : A) => P x /\ R x y.
Definition on_predicate_relation_r {A} (P : A -> Prop) (R : relation A)
: relation A :=
fun (x y : A) => P y /\ R x y.
Lemma proper_proxy_on_predicate_l {A} (P : A -> Prop) (R : relation A)
(x : A) :
P x ->
Morphisms.ProperProxy R x ->
Morphisms.ProperProxy (on_predicate_relation_l P R) x.
Proof.
easy.
Qed.
Lemma proper_proxy_on_predicate_r {A} (P : A -> Prop) (R : relation A)
(x : A) :
P x ->
Morphisms.ProperProxy R x ->
Morphisms.ProperProxy (on_predicate_relation_r P R) x.
Proof.
easy.
Qed.
Lemma proper_proxy_flip_on_predicate_l {A} (P : A -> Prop) (R : relation A)
(x : A) :
P x ->
Morphisms.ProperProxy R x ->
Morphisms.ProperProxy (flip (on_predicate_relation_l P R)) x.
Proof.
easy.
Qed.
Lemma proper_proxy_flip_on_predicate_r {A} (P : A -> Prop) (R : relation A)
(x : A) :
P x ->
Morphisms.ProperProxy R x ->
Morphisms.ProperProxy (flip (on_predicate_relation_r P R)) x.
Proof.
easy.
Qed.
#[export] Hint Extern 0
(Morphisms.ProperProxy (on_predicate_relation_l ?P ?R) ?x) =>
apply (proper_proxy_on_predicate_l P R x
ltac:(auto with proper_side_conditions_db)) : typeclass_instances.
#[export] Hint Extern 0
(Morphisms.ProperProxy (on_predicate_relation_r ?P ?R) ?x) =>
apply (proper_proxy_on_predicate_r P R x
ltac:(auto with proper_side_conditions_db)) : typeclass_instances.
#[export] Hint Extern 0
(Morphisms.ProperProxy (flip (on_predicate_relation_l ?P ?R)) ?x) =>
apply (proper_proxy_flip_on_predicate_l P R x
ltac:(auto with proper_side_conditions_db)) : typeclass_instances.
#[export] Hint Extern 0
(Morphisms.ProperProxy (flip (on_predicate_relation_r ?P ?R)) ?x) =>
apply (proper_proxy_flip_on_predicate_r P R x
ltac:(auto with proper_side_conditions_db)) : typeclass_instances.
#[export] Hint Extern 10 => cbn beta : proper_side_conditions_db.
Add Parametric Relation n : (nat -> nat) (perm_eq n)
reflexivity proved by (perm_eq_refl n)
symmetry proved by (@perm_eq_sym n)
transitivity proved by (@perm_eq_trans n)
as perm_eq_Setoid.
#[export] Hint Extern 0 (perm_bounded _ _) =>
solve [auto with perm_bounded_db perm_db] : proper_side_conditions_db.
#[export] Hint Extern 0 (permutation _ _) =>
solve [auto with perm_db] : proper_side_conditions_db.
#[export] Hint Extern 0 (WF_Perm _ _) =>
solve [auto with WF_Perm_db] : proper_side_conditions_db.
#[export] Hint Resolve perm_eq_refl : perm_db perm_inv_db.
Section PermComposeLemmas.
Local Open Scope prg.
Lemma perm_eq_compose_rewrite_l {n} {f g h : nat -> nat}
(H : perm_eq n (f ∘ g) (h)) : forall (i : nat -> nat),
perm_eq n (i ∘ f ∘ g) (i ∘ h).
Proof.
intros i k Hk.
unfold compose in *.
now rewrite H.
Qed.
Lemma perm_eq_compose_rewrite_l_to_2 {n} {f g h i : nat -> nat}
(H : perm_eq n (f ∘ g) (h ∘ i)) : forall (j : nat -> nat),
perm_eq n (j ∘ f ∘ g) (j ∘ h ∘ i).
Proof.
intros j k Hk.
unfold compose in *.
now rewrite H.
Qed.
Lemma perm_eq_compose_rewrite_l_to_Id {n} {f g : nat -> nat}
(H : perm_eq n (f ∘ g) idn) : forall (h : nat -> nat),
perm_eq n (h ∘ f ∘ g) h.
Proof.
intros h k Hk.
unfold compose in *.
now rewrite H.
Qed.
Lemma perm_eq_compose_rewrite_r {n} {f g h : nat -> nat}
(H : perm_eq n (f ∘ g) h) : forall (i : nat -> nat),
perm_bounded n i ->
perm_eq n (f ∘ (g ∘ i)) (h ∘ i).
Proof.
intros i Hi k Hk.
unfold compose in *.
now rewrite H by auto.
Qed.
Lemma perm_eq_compose_rewrite_r_to_2 {n} {f g h i : nat -> nat}
(H : perm_eq n (f ∘ g) (h ∘ i)) : forall (j : nat -> nat),
perm_bounded n j ->
perm_eq n (f ∘ (g ∘ j)) (h ∘ (i ∘ j)).
Proof.
intros j Hj k Hk.
unfold compose in *.
now rewrite H by auto.
Qed.
Lemma perm_eq_compose_rewrite_r_to_Id {n} {f g : nat -> nat}
(H : perm_eq n (f ∘ g) idn) : forall (h : nat -> nat),
perm_bounded n h ->
perm_eq n (f ∘ (g ∘ h)) h.
Proof.
intros h Hh k Hk.
unfold compose in *.
now rewrite H by auto.
Qed.
End PermComposeLemmas.
Ltac make_perm_eq_compose_assoc_rewrite_l lem :=
lazymatch type of lem with
| perm_eq ?n (?F ∘ ?G)%prg idn =>
constr:(perm_eq_compose_rewrite_l_to_Id lem)
| perm_eq ?n (?F ∘ ?G)%prg (?F' ∘ ?G')%prg =>
constr:(perm_eq_compose_rewrite_l_to_2 lem)
| perm_eq ?n (?F ∘ ?G)%prg ?H =>
constr:(perm_eq_compose_rewrite_l lem)
| forall a : ?A, @?f a =>
let x := fresh a in
constr:(fun x : A => ltac:(
let r := make_perm_eq_compose_assoc_rewrite_l (lem x) in
exact r))
end.
Ltac make_perm_eq_compose_assoc_rewrite_l' lem :=
lazymatch type of lem with
| perm_eq ?n idn (?F ∘ ?G)%prg =>
constr:(perm_eq_compose_rewrite_l_to_Id (perm_eq_sym lem))
| perm_eq ?n (?F ∘ ?G)%prg (?F' ∘ ?G')%prg =>
constr:(perm_eq_compose_rewrite_l_to_2 (perm_eq_sym lem))
| perm_eq ?n ?H (?F ∘ ?G)%prg =>
constr:(perm_eq_compose_rewrite_l (perm_eq_sym lem))
| forall a : ?A, @?f a =>
let x := fresh a in
constr:(fun x : A => ltac:(
let r := make_perm_eq_compose_assoc_rewrite_l' (lem x) in
exact r))
end.
Ltac rewrite_perm_eq_compose_assoc_l lem :=
let lem' := make_perm_eq_compose_assoc_rewrite_l lem in
rewrite lem' || rewrite lem.
Ltac rewrite_perm_eq_compose_assoc_l' lem :=
let lem' := make_perm_eq_compose_assoc_rewrite_l' lem in
rewrite lem' || rewrite <- lem.
Ltac make_perm_eq_compose_assoc_rewrite_r lem :=
lazymatch type of lem with
| perm_eq ?n (?F ∘ ?G)%prg idn =>
constr:(perm_eq_compose_rewrite_r_to_Id lem)
| perm_eq ?n (?F ∘ ?G)%prg (?F' ∘ ?G')%prg =>
constr:(perm_eq_compose_rewrite_r_to_2 lem)
| perm_eq ?n (?F ∘ ?G)%prg ?H =>
constr:(perm_eq_compose_rewrite_r lem)
| forall a : ?A, @?f a =>
let x := fresh a in
constr:(fun x : A => ltac:(
let r := make_perm_eq_compose_assoc_rewrite_r (lem x) in
exact r))
end.
Ltac make_perm_eq_compose_assoc_rewrite_r' lem :=
lazymatch type of lem with
| perm_eq ?n idn (?F ∘ ?G)%prg =>
constr:(perm_eq_compose_rewrite_r_to_Id (perm_eq_sym lem))
| perm_eq ?n (?F ∘ ?G)%prg (?F' ∘ ?G')%prg =>
constr:(perm_eq_compose_rewrite_r_to_2 (perm_eq_sym lem))
| perm_eq ?n ?H (?F ∘ ?G)%prg =>
constr:(perm_eq_compose_rewrite_r (perm_eq_sym lem))
| forall a : ?A, @?f a =>
let x := fresh a in
constr:(fun x : A => ltac:(
let r := make_perm_eq_compose_assoc_rewrite_r' (lem x) in
exact r))
end.
Ltac rewrite_perm_eq_compose_assoc_r lem :=
let lem' := make_perm_eq_compose_assoc_rewrite_r lem in
rewrite lem' || rewrite lem.
Ltac rewrite_perm_eq_compose_assoc_r' lem :=
let lem' := make_perm_eq_compose_assoc_rewrite_r' lem in
rewrite lem' || rewrite <- lem.
Notation "'###perm_l' '->' lem" :=
(ltac:(let r := make_perm_eq_compose_assoc_rewrite_l lem in exact r))
(at level 0, lem at level 15, only parsing).
Notation "'###perm_r' '->' lem" :=
(ltac:(let r := make_perm_eq_compose_assoc_rewrite_r lem in exact r))
(at level 0, lem at level 15, only parsing).
Notation "'###perm_l' '<-' lem" :=
(ltac:(let r := make_perm_eq_compose_assoc_rewrite_l' lem in exact r))
(at level 0, lem at level 15, only parsing).
Notation "'###perm_r' '<-' lem" :=
(ltac:(let r := make_perm_eq_compose_assoc_rewrite_r' lem in exact r))
(at level 0, lem at level 15, only parsing).
Section ComposeLemmas.
Local Open Scope prg.
(* Helpers for rewriting with compose and perm_eq *)
Lemma compose_rewrite_l {f g h : nat -> nat}
(H : f ∘ g = h) : forall (i : nat -> nat),
i ∘ f ∘ g = i ∘ h.
Proof.
intros;
now rewrite compose_assoc, H.
Qed.
Lemma compose_rewrite_l_to_2 {f g h i : nat -> nat}
(H : f ∘ g = h ∘ i) : forall (j : nat -> nat),
j ∘ f ∘ g = j ∘ h ∘ i.
Proof.
intros;
now rewrite !compose_assoc, H.
Qed.
Lemma compose_rewrite_l_to_Id {f g : nat -> nat}
(H : f ∘ g = idn) : forall (h : nat -> nat),
h ∘ f ∘ g = h.
Proof.
intros;
now rewrite compose_assoc, H, compose_idn_r.
Qed.
Lemma compose_rewrite_r {f g h : nat -> nat}
(H : f ∘ g = h) : forall (i : nat -> nat),
f ∘ (g ∘ i) = h ∘ i.
Proof.
intros;
now rewrite <- compose_assoc, H.
Qed.
Lemma compose_rewrite_r_to_2 {f g h i : nat -> nat}
(H : f ∘ g = h ∘ i) : forall (j : nat -> nat),
f ∘ (g ∘ j) = h ∘ (i ∘ j).
Proof.
intros;
now rewrite <- !compose_assoc, H.
Qed.
Lemma compose_rewrite_r_to_Id {f g : nat -> nat}
(H : f ∘ g = idn) : forall (h : nat -> nat),
f ∘ (g ∘ h) = h.
Proof.
intros;
now rewrite <- compose_assoc, H, compose_idn_l.
Qed.
End ComposeLemmas.
Ltac make_compose_assoc_rewrite_l lem :=
lazymatch type of lem with
| forall a : ?A, @?f a =>
let x := fresh a in
constr:(fun x : A => ltac:(
let r := make_compose_assoc_rewrite_l (lem x) in
exact r))
| (?F ∘ ?G)%prg = idn =>
constr:(compose_rewrite_l_to_Id lem)
| (?F ∘ ?G)%prg = (?F' ∘ ?G')%prg =>
constr:(compose_rewrite_l_to_2 lem)
| (?F ∘ ?G)%prg = ?H =>
constr:(compose_rewrite_l lem)
end.
Ltac make_compose_assoc_rewrite_l' lem :=
lazymatch type of lem with
| forall a : ?A, @?f a =>
let x := fresh a in
constr:(fun x : A => ltac:(
let r := make_compose_assoc_rewrite_l' (lem x) in
exact r))
| idn = (?F ∘ ?G)%prg =>
constr:(compose_rewrite_l_to_Id (eq_sym lem))
| (?F ∘ ?G)%prg = (?F' ∘ ?G')%prg =>
constr:(compose_rewrite_l_to_2 (eq_sym lem))
| ?H = (?F ∘ ?G)%prg =>
constr:(compose_rewrite_l (eq_sym lem))
end.
Ltac rewrite_compose_assoc_l lem :=
let lem' := make_compose_assoc_rewrite_l lem in
rewrite lem' || rewrite lem.
Ltac rewrite_compose_assoc_l' lem :=
let lem' := make_compose_assoc_rewrite_l' lem in
rewrite lem' || rewrite <- lem.
Ltac make_compose_assoc_rewrite_r lem :=
lazymatch type of lem with
| forall a : ?A, @?f a =>
let x := fresh a in
constr:(fun x : A => ltac:(
let r := make_compose_assoc_rewrite_r (lem x) in
exact r))
| (?F ∘ ?G)%prg = idn =>
constr:(compose_rewrite_r_to_Id lem)
| (?F ∘ ?G)%prg = (?F' ∘ ?G')%prg =>
constr:(compose_rewrite_r_to_2 lem)
| (?F ∘ ?G)%prg = ?H =>
constr:(compose_rewrite_r lem)
end.
Ltac make_compose_assoc_rewrite_r' lem :=
lazymatch type of lem with
| forall a : ?A, @?f a =>
let x := fresh a in
constr:(fun x : A => ltac:(
let r := make_compose_assoc_rewrite_r' (lem x) in
exact r))
| idn = (?F ∘ ?G)%prg =>
constr:(compose_rewrite_r_to_Id (eq_sym lem))
| (?F ∘ ?G)%prg = (?F' ∘ ?G')%prg =>
constr:(compose_rewrite_r_to_2 (eq_sym lem))
| ?H = (?F ∘ ?G)%prg =>
constr:(compose_rewrite_r (eq_sym lem))
end.
Ltac rewrite_compose_assoc_r lem :=
let lem' := make_compose_assoc_rewrite_r lem in
rewrite lem' || rewrite lem.
Ltac rewrite_compose_assoc_r' lem :=
let lem' := make_compose_assoc_rewrite_r' lem in
rewrite lem' || rewrite <- lem.
Notation "'###comp_l' '->' lem" :=
(ltac:(let r := make_compose_assoc_rewrite_l lem in exact r))
(at level 0, lem at level 15, only parsing).
Notation "'###comp_r' '->' lem" :=
(ltac:(let r := make_compose_assoc_rewrite_r lem in exact r))
(at level 0, lem at level 15, only parsing).
Notation "'###comp_l' '<-' lem" :=
(ltac:(let r := make_compose_assoc_rewrite_l' lem in exact r))
(at level 0, lem at level 15, only parsing).
Notation "'###comp_r' '<-' lem" :=
(ltac:(let r := make_compose_assoc_rewrite_r' lem in exact r))
(at level 0, lem at level 15, only parsing).