OpenAI Gym MuJoCo tasks
python train.py --env_name=HalfCheetah-v2 --save_dir=./tmp/
Experiment tracking with Weights and Biases
python train.py --env_name=HalfCheetah-v2 --save_dir=./tmp/ --track
DeepMind Control suite (--env-name=domain-task)
python train.py --env_name=cheetah-run --save_dir=./tmp/
For continuous control from pixels
MUJOCO_GL=egl python train_pixels.py --env_name=cheetah-run --save_dir=./tmp/
For offline RL
python train_offline.py --env_name=halfcheetah-expert-v0 --dataset_name=d4rl --save_dir=./tmp/
For RL finetuning
python train_finetuning.py --env_name=HalfCheetah-v2 --dataset_name=awac --save_dir=./tmp/
For sample efficient RL
python train.py --env_name=Hopper-v2 --start_training=5000 --max_steps=300000 --updates_per_step=20 --config=configs/redq_default.py --save_dir=./tmp/