-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_distance_matrix.py
95 lines (74 loc) · 2.11 KB
/
compute_distance_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# note
"""
This file computes SSPD trajectory distance matrix for given spatial data
"""
# COMPUTING ON MULTIPLE CORE
import time
from multiprocessing import Pool
import numpy as np
import traj_dist.distance as tdist
from utils.path import (
EXITED_DISTANCE_MATRIX,
EXITED_TRAJECTORY_FILENAME,
GROUND_DISTANCE_MATRIX,
GROUND_TRAJECTORY_FILENAME,
RESULT_DIR,
TRAJ_DIR,
NUMBER_OF_TRAJS,
)
G_trajectories = np.load(TRAJ_DIR + GROUND_TRAJECTORY_FILENAME, allow_pickle=True)[
:NUMBER_OF_TRAJS
]
E_trajectories = np.load(TRAJ_DIR + EXITED_TRAJECTORY_FILENAME, allow_pickle=True)[
:NUMBER_OF_TRAJS
]
"First compute ground trajectories"
traj_list = np.copy(G_trajectories)
def task(index_i, index_j):
traj_list_i = traj_list[index_i]
traj_list_j = traj_list[index_j]
return tdist.sspd(traj_list_i, traj_list_j)
# initial parameters
traj_count = len(traj_list)
M = np.zeros(sum(range(traj_count)))
im = 0
index_list = []
for i in range(traj_count):
for j in range(i + 1, traj_count):
index_list.append((i, j))
print(
f"Confugured {len(M)} distanses for {traj_count} trajectories\nComputation starts"
)
st = time.time()
with Pool() as pool:
print("Pool created")
for result in pool.starmap(task, index_list, chunksize=1):
M[im] = result
im += 1
et = time.time()
print(f"G matrix was computed in {(et-st)/60/60} hours")
# Save data
np.save(RESULT_DIR + GROUND_DISTANCE_MATRIX, M)
# Then compute exited trajectories
traj_list = np.copy(E_trajectories)
# initial parameters
traj_count = len(traj_list)
M = np.zeros(sum(range(traj_count)))
im = 0
index_list = []
for i in range(traj_count):
for j in range(i + 1, traj_count):
index_list.append((i, j))
print(
f"Confugured {len(M)} distanses for {traj_count} trajectories\nComputation starts"
)
st = time.time()
with Pool() as pool:
print("Pool created")
for result in pool.starmap(task, index_list, chunksize=1):
M[im] = result
im += 1
et = time.time()
print(f"E matrix was computed in {(et-st)/60/60} hours")
# Save data
np.save(RESULT_DIR + EXITED_DISTANCE_MATRIX, M)