forked from haasn/FSRCNN-TensorFlow
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathutils.py
381 lines (312 loc) · 13.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
"""
Scipy version > 0.18 is needed, due to 'mode' option from scipy.misc.imread function
"""
import os
import glob
from math import ceil
import subprocess
import io
from random import randrange, shuffle
import tensorflow.compat.v1 as tf
from PIL import Image
import numpy as np
import multiprocessing
FLAGS = tf.app.flags.FLAGS
downsample = True
def preprocess(path, scale=3, distort=False):
"""
Preprocess single image file
(1) Read original image
(2) Downsample by scale factor
(3) Normalize
"""
try:
from wand.image import Image
except:
from PIL import Image
image = Image.open(path).convert('L')
(width, height) = image.size
if downsample:
image = image.crop((0, 0, width - width % scale, height - height % scale))
(width, height) = image.size
label_ = np.frombuffer(image.tobytes(), dtype=np.uint8).reshape((height, width))
(new_width, new_height) = width // scale, height // scale
scaled_image = image.resize((new_width, new_height), Image.BICUBIC)
image.close()
if distort==True and randrange(3) == 0:
buf = io.BytesIO()
scaled_image.convert('RGB').save(buf, "JPEG", quality=randrange(85, 95, 5))
buf.seek(0)
scaled_image = Image.open(buf).convert('L')
#scaled_image.convert('RGB').save("lowres.png")
#subprocess.call(['ffmpeg', '-y', '-i', 'lowres.png', '-c:v', 'libx264', '-crf', '20', 'lowres.mkv'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
#subprocess.call(['ffmpeg', '-y', '-i', 'lowres.mkv', '-vframes', '1', 'lowres.png'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
#scaled_image = Image.open('lowres.png').convert('L')
input_ = np.frombuffer(scaled_image.tobytes(), dtype=np.uint8).reshape((new_height, new_width))
else:
input_ = np.frombuffer(image.tobytes(), dtype=np.uint8).reshape(height, width)
scaled_image = image.resize((width * scale, height * scale), Image.BICUBIC)
(width, height) = scaled_image.size
label_ = np.frombuffer(scaled_image.tobytes(), dtype=np.uint8).reshape(height, width)
else:
with Image(filename=path) as img:
img.alpha_channel = False
img.transform_colorspace("ycbcr")
if downsample:
img.crop(width = img.width - img.width % scale, height = img.height - img.height % scale)
label_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
img.resize(width = img.width // scale, height = img.height // scale, filter = "lanczos2", blur=1.0)
if distort==True and randrange(3) == 0:
img.compression_quality = randrange(85, 95, 5)
img.transform_colorspace("rgb")
jpeg_bin = img.make_blob('jpeg')
img = Image(blob=jpeg_bin)
input_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
else:
input_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
img.resize(width = img.width * scale, height = img.height * scale, filter = "catrom")
label_ = np.frombuffer(img.make_blob('YCbCr'), dtype=np.uint8).reshape(img.height, img.width, 3)[:,:,0]
return input_ / 255, label_ / 255
def prepare_data(sess, dataset):
"""
Args:
dataset: choose train dataset or test dataset
For train dataset, output data would be ['.../t1.bmp', '.../t2.bmp', ..., '.../t99.bmp']
"""
if FLAGS.train:
data_dir = os.path.join(os.getcwd(), dataset)
data = []
for files in ('*.bmp', '*.png'):
data.extend(glob.glob(os.path.join(data_dir, files)))
shuffle(data)
else:
data_dir = os.path.join(os.sep, (os.path.join(os.getcwd(), dataset)), "Set5")
data = sorted(glob.glob(os.path.join(data_dir, "*.bmp")))
return data
def modcrop(image, scale=3):
"""
To scale down and up the original image, first thing to do is to have no remainder while scaling operation.
We need to find modulo of height (and width) and scale factor.
Then, subtract the modulo from height (and width) of original image size.
There would be no remainder even after scaling operation.
"""
if len(image.shape) == 3:
h, w, _ = image.shape
h = h - np.mod(h, scale)
w = w - np.mod(w, scale)
image = image[0:h, 0:w, :]
else:
h, w = image.shape
h = h - np.mod(h, scale)
w = w - np.mod(w, scale)
image = image[0:h, 0:w]
return image
def train_input_worker(args):
image_data, config = args
image_size, label_size, stride, scale, padding, distort = config
single_input_sequence, single_label_sequence = [], []
input_, label_ = preprocess(image_data, scale, distort=distort)
if len(input_.shape) == 3:
h, w, _ = input_.shape
else:
h, w = input_.shape
for x in range(0, h - image_size + 1, stride):
for y in range(0, w - image_size + 1, stride):
sub_input = input_[x : x + image_size, y : y + image_size]
x_loc, y_loc = x + padding, y + padding
sub_label = label_[x_loc * scale : x_loc * scale + label_size, y_loc * scale : y_loc * scale + label_size]
sub_input = sub_input.reshape([image_size, image_size, 1])
sub_label = sub_label.reshape([label_size, label_size, 1])
single_input_sequence.append(sub_input)
single_label_sequence.append(sub_label)
return [single_input_sequence, single_label_sequence]
def multiprocess_train_setup(config):
"""
Spawns several processes to pre-process the data
"""
if downsample == False:
import sys
sys.exit()
data = prepare_data(config.sess, dataset=config.data_dir)
with multiprocessing.Pool(max(multiprocessing.cpu_count() - 1, 1)) as pool:
config_values = [config.image_size, config.label_size, config.stride, config.scale, config.padding // 2, config.distort]
results = pool.map(train_input_worker, [(data[i], config_values) for i in range(len(data))])
sub_input_sequence, sub_label_sequence = [], []
for image in range(len(results)):
single_input_sequence, single_label_sequence = results[image]
sub_input_sequence.extend(single_input_sequence)
sub_label_sequence.extend(single_label_sequence)
arrdata = np.asarray(sub_input_sequence)
arrlabel = np.asarray(sub_label_sequence)
return (arrdata, arrlabel)
def test_input_setup(config):
sess = config.sess
# Load data path
data = prepare_data(sess, dataset="Test")
input_, label_ = preprocess(data[2], config.scale)
if len(input_.shape) == 3:
h, w, _ = input_.shape
else:
h, w = input_.shape
arrdata = np.pad(input_.reshape([1, h, w, 1]), ((0,0),(2,2),(2,2),(0,0)), 'reflect')
if len(label_.shape) == 3:
h, w, _ = label_.shape
else:
h, w = label_.shape
arrlabel = label_.reshape([1, h, w, 1])
return (arrdata, arrlabel)
def merge(config, Y):
"""
Merges super-resolved image with chroma components
"""
h, w = Y.shape[1], Y.shape[2]
Y = Y.reshape(h, w, 1) * 255
Y = Y.round().astype(np.uint8)
data = prepare_data(config.sess, dataset="Test")
src = Image.open(data[2]).convert('YCbCr')
(width, height) = src.size
if downsample is False:
src = src.resize((width * config.scale, height * config.scale), Image.BICUBIC)
(width, height) = src.size
CbCr = np.frombuffer(src.tobytes(), dtype=np.uint8).reshape(height, width, 3)[:,:,1:]
img = np.concatenate((Y, CbCr), axis=-1)
return img
def save_params(sess, params):
param_dir = "params/"
if not os.path.exists(param_dir):
os.makedirs(param_dir)
h = open(param_dir + "weights{}.txt".format('_'.join(str(i) for i in params)), 'w')
variables = dict((var.name, sess.run(var)) for var in tf.trainable_variables())
for name, weights in variables.items():
h.write("{} =\n".format(name[:name.index(':')]))
if len(weights.shape) < 4:
h.write("{}\n\n".format(weights.flatten().tolist()))
else:
h.write("[")
sep = False
for filter_x in range(len(weights)):
for filter_y in range(len(weights[filter_x])):
filter_weights = weights[filter_x][filter_y]
for input_channel in range(len(filter_weights)):
for output_channel in range(len(filter_weights[input_channel])):
val = filter_weights[input_channel][output_channel]
if sep:
h.write(', ')
h.write("{}".format(val))
sep = True
h.write("\n ")
h.write("]\n\n")
h.close()
def array_image_save(array, image_path):
"""
Converts np array to image and saves it
"""
image = Image.fromarray(array, 'YCbCr')
if image.mode != 'RGB':
image = image.convert('RGB')
image.save(image_path)
print("Saved image: {}".format(image_path))
def gradient_sensitive_loss(img1, img2):
dY = tf.image.sobel_edges(img1) / 4.
dX = tf.image.sobel_edges(img2) / 4.
M = tf.sqrt(tf.square(dY[:,:,:,:,0]) + tf.square(dY[:,:,:,:,1]))
#dY = tf.image.sobel_edges(img1 * M)
#dX = tf.image.sobel_edges(img2 * M)
return tf.losses.absolute_difference(dY, dX) \
+ tf.losses.absolute_difference((1.0 - M) * img1, (1.0 - M) * img2, weights=2.0)
def _tf_fspecial_gauss(size, sigma):
"""Function to mimic the 'fspecial' gaussian MATLAB function
"""
x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1]
x_data = np.expand_dims(x_data, axis=-1)
x_data = np.expand_dims(x_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
y_data = np.expand_dims(y_data, axis=-1)
x = tf.constant(x_data, dtype=tf.float32)
y = tf.constant(y_data, dtype=tf.float32)
g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2)))
return g / tf.reduce_sum(g)
def tf_ssim(img1, img2, cs_map=False, mean_metric=True, sigma=1.5):
size = int(sigma * 3) * 2 + 1
window = _tf_fspecial_gauss(size, sigma)
K1 = 0.01
K2 = 0.03
L = 1 # depth of image (255 in case the image has a differnt scale)
C1 = (K1*L)**2
C2 = (K2*L)**2
mu1 = tf.nn.conv2d(img1, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC')
mu2 = tf.nn.conv2d(img2, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC')
mu1_sq = mu1*mu1
mu2_sq = mu2*mu2
mu1_mu2 = mu1*mu2
sigma1_sq = tf.abs(tf.nn.conv2d(img1*img1, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC') - mu1_sq)
sigma2_sq = tf.abs(tf.nn.conv2d(img2*img2, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC') - mu2_sq)
sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1,1,1,1], padding='VALID', data_format='NHWC') - mu1_mu2
if cs_map:
value = (2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2)
else:
value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*
(sigma1_sq + sigma2_sq + C2))
if mean_metric:
value = tf.reduce_mean(value)
return value
def tf_ms_ssim(img1, img2, sigma=1.5, weights=[0.1, 0.9]):
weights = weights / np.sum(weights)
window = _tf_fspecial_gauss(5, 1)
mssim = []
for i in range(len(weights)):
mssim.append(tf_ssim(img1, img2, sigma=sigma))
img1 = tf.nn.conv2d(img1, window, [1,2,2,1], 'VALID')
img2 = tf.nn.conv2d(img2, window, [1,2,2,1], 'VALID')
value = tf.reduce_sum(tf.multiply(tf.stack(mssim), weights))
return value
def bilinear_upsample_weights(factor, channels):
"""
Create weights matrix for transposed convolution with bilinear filter
initialization.
"""
filter_size = 2 * factor - factor % 2
center = factor - (1 if factor % 2 == 1 else 0.5)
og = np.ogrid[:filter_size, :filter_size]
upsample_kernel = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)
weights = np.zeros((filter_size, filter_size, channels, channels), dtype=np.float32)
for i in range(channels):
weights[:, :, i, i] = upsample_kernel
return weights
def bicubic_kernel(x, B=1/3., C=1/3.):
"""https://de.wikipedia.org/wiki/Mitchell-Netravali-Filter"""
if abs(x) < 1:
return 1/6. * ((12-9*B-6*C)*abs(x)**3 + ((-18+12*B+6*C)*abs(x)**2 + (6-2*B)))
elif 1 <= abs(x) and abs(x) < 2:
return 1/6. * ((-B-6*C)*abs(x)**3 + (6*B+30*C)*abs(x)**2 + (-12*B-48*C)*abs(x) + (8*B+24*C))
else:
return 0
def build_filter(factor, B, C, channels=1):
size = factor * 4
k = np.zeros((size), dtype=np.float32)
for i in range(size):
x = (1 / factor) * (i - np.floor(size / 2) + 0.5)
k[i] = bicubic_kernel(x, B, C)
k = k / np.sum(k)
k = np.outer(k, k)
weights = np.zeros((size, size, channels, channels), dtype=np.float32)
for i in range(channels):
weights[:, :, i, i] = k
return weights
def bicubic_downsample(x, factor, B=1/3., C=1/3.):
"""Downsample x by a factor of factor, using the filter built by build_filter()
x: a rank 4 tensor with format NHWC
factor: downsampling factor (ex: factor=2 means the output size is (h/2, w/2))
"""
# using padding calculations from https://www.tensorflow.org/api_guides/python/nn#Convolution
kernel_size = factor * 4
padding = kernel_size - factor
pad_top = padding // 2
pad_bottom = padding - pad_top
pad_left = padding // 2
pad_right = padding - pad_left
# apply mirror padding
x = tf.pad(x, [[0,0], [pad_top,pad_bottom], [pad_left,pad_right], [0,0]], mode='REFLECT')
# downsampling performed by strided conv
x = tf.nn.conv2d(x, build_filter(factor, B, C), [1,factor,factor,1], 'VALID', data_format='NHWC')
return x