forked from haasn/FSRCNN-TensorFlow
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathESPCN.py
55 lines (45 loc) · 2.21 KB
/
ESPCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import tensorflow.compat.v1 as tf
from utils import gradient_sensitive_loss, tf_ms_ssim
class Model(object):
def __init__(self, config):
self.name = "ESPCN"
self.model_params = [64, 32] #[64, 32, 28]
self.scale = config.scale
self.radius = config.radius
self.padding = config.padding
self.images = config.images
self.batch = config.batch
self.label_size = config.label_size
def model(self):
d = self.model_params
m = len(d) + 2
# Feature Extraction
size = self.padding + 1
weights = tf.get_variable('w1', shape=[size, size, 1, d[0]], initializer=tf.variance_scaling_initializer(0.1))
biases = tf.get_variable('b1', initializer=tf.zeros([d[0]]))
conv = tf.nn.conv2d(self.images, weights, strides=[1,1,1,1], padding='VALID', data_format='NHWC')
conv = tf.nn.bias_add(conv, biases, data_format='NHWC')
conv = self.prelu(conv, 1)
# Mapping (# mapping layers = m)
for i in range(3, m):
weights = tf.get_variable('w{}'.format(i), shape=[3, 3, d[i-3], d[i-2]], initializer=tf.variance_scaling_initializer(2))
biases = tf.get_variable('b{}'.format(i), initializer=tf.zeros([d[i-2]]))
conv = tf.nn.conv2d(conv, weights, strides=[1,1,1,1], padding='SAME', data_format='NHWC')
conv = tf.nn.bias_add(conv, biases, data_format='NHWC')
conv = self.prelu(conv, i)
# Sub-pixel convolution
size = self.radius * 2 + 1
deconv_weights = tf.get_variable('deconv_w', shape=[size, size, d[-1], self.scale**2], initializer=tf.variance_scaling_initializer(0.01))
deconv_biases = tf.get_variable('deconv_b', initializer=tf.zeros([self.scale**2]))
deconv = tf.nn.conv2d(conv, deconv_weights, strides=[1,1,1,1], padding='SAME', data_format='NHWC')
deconv = tf.nn.bias_add(deconv, deconv_biases, data_format='NHWC')
deconv = tf.depth_to_space(deconv, self.scale, name='pixel_shuffle', data_format='NHWC')
return deconv
def prelu(self, _x, i):
"""
PreLU tensorflow implementation
"""
alphas = tf.get_variable('alpha{}'.format(i), _x.get_shape()[-1], initializer=tf.constant_initializer(0.2), dtype=tf.float32)
return tf.nn.relu(_x) - alphas * tf.nn.relu(-_x)
def loss(self, Y, X):
return gradient_sensitive_loss(Y, X)