-
Notifications
You must be signed in to change notification settings - Fork 30
/
readData_IWR1443.py
345 lines (261 loc) · 12.9 KB
/
readData_IWR1443.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import serial
import time
import numpy as np
import pyqtgraph as pg
from pyqtgraph.Qt import QtGui
# Change the configuration file name
configFileName = '1443config.cfg'
CLIport = {}
Dataport = {}
byteBuffer = np.zeros(2**15,dtype = 'uint8')
byteBufferLength = 0;
# ------------------------------------------------------------------
# Function to configure the serial ports and send the data from
# the configuration file to the radar
def serialConfig(configFileName):
global CLIport
global Dataport
# Open the serial ports for the configuration and the data ports
# Raspberry pi
#CLIport = serial.Serial('/dev/ttyACM0', 115200)
#Dataport = serial.Serial('/dev/ttyACM1', 921600)
# Windows
CLIport = serial.Serial('COM3', 115200)
Dataport = serial.Serial('COM4', 921600)
# Read the configuration file and send it to the board
config = [line.rstrip('\r\n') for line in open(configFileName)]
for i in config:
CLIport.write((i+'\n').encode())
print(i)
time.sleep(0.01)
return CLIport, Dataport
# ------------------------------------------------------------------
# Function to parse the data inside the configuration file
def parseConfigFile(configFileName):
configParameters = {} # Initialize an empty dictionary to store the configuration parameters
# Read the configuration file and send it to the board
config = [line.rstrip('\r\n') for line in open(configFileName)]
for i in config:
# Split the line
splitWords = i.split(" ")
# Hard code the number of antennas, change if other configuration is used
numRxAnt = 4
numTxAnt = 3
# Get the information about the profile configuration
if "profileCfg" in splitWords[0]:
startFreq = int(float(splitWords[2]))
idleTime = int(splitWords[3])
rampEndTime = float(splitWords[5])
freqSlopeConst = float(splitWords[8])
numAdcSamples = int(splitWords[10])
numAdcSamplesRoundTo2 = 1;
while numAdcSamples > numAdcSamplesRoundTo2:
numAdcSamplesRoundTo2 = numAdcSamplesRoundTo2 * 2;
digOutSampleRate = int(splitWords[11]);
# Get the information about the frame configuration
elif "frameCfg" in splitWords[0]:
chirpStartIdx = int(splitWords[1]);
chirpEndIdx = int(splitWords[2]);
numLoops = int(splitWords[3]);
numFrames = int(splitWords[4]);
framePeriodicity = int(splitWords[5]);
# Combine the read data to obtain the configuration parameters
numChirpsPerFrame = (chirpEndIdx - chirpStartIdx + 1) * numLoops
configParameters["numDopplerBins"] = numChirpsPerFrame / numTxAnt
configParameters["numRangeBins"] = numAdcSamplesRoundTo2
configParameters["rangeResolutionMeters"] = (3e8 * digOutSampleRate * 1e3) / (2 * freqSlopeConst * 1e12 * numAdcSamples)
configParameters["rangeIdxToMeters"] = (3e8 * digOutSampleRate * 1e3) / (2 * freqSlopeConst * 1e12 * configParameters["numRangeBins"])
configParameters["dopplerResolutionMps"] = 3e8 / (2 * startFreq * 1e9 * (idleTime + rampEndTime) * 1e-6 * configParameters["numDopplerBins"] * numTxAnt)
configParameters["maxRange"] = (300 * 0.9 * digOutSampleRate)/(2 * freqSlopeConst * 1e3)
configParameters["maxVelocity"] = 3e8 / (4 * startFreq * 1e9 * (idleTime + rampEndTime) * 1e-6 * numTxAnt)
return configParameters
# ------------------------------------------------------------------
# Funtion to read and parse the incoming data
def readAndParseData14xx(Dataport, configParameters):
global byteBuffer, byteBufferLength
# Constants
OBJ_STRUCT_SIZE_BYTES = 12;
BYTE_VEC_ACC_MAX_SIZE = 2**15;
MMWDEMO_UART_MSG_DETECTED_POINTS = 1;
MMWDEMO_UART_MSG_RANGE_PROFILE = 2;
maxBufferSize = 2**15;
magicWord = [2, 1, 4, 3, 6, 5, 8, 7]
# Initialize variables
magicOK = 0 # Checks if magic number has been read
dataOK = 0 # Checks if the data has been read correctly
frameNumber = 0
detObj = {}
readBuffer = Dataport.read(Dataport.in_waiting)
byteVec = np.frombuffer(readBuffer, dtype = 'uint8')
byteCount = len(byteVec)
# Check that the buffer is not full, and then add the data to the buffer
if (byteBufferLength + byteCount) < maxBufferSize:
byteBuffer[byteBufferLength:byteBufferLength + byteCount] = byteVec[:byteCount]
byteBufferLength = byteBufferLength + byteCount
# Check that the buffer has some data
if byteBufferLength > 16:
# Check for all possible locations of the magic word
possibleLocs = np.where(byteBuffer == magicWord[0])[0]
# Confirm that is the beginning of the magic word and store the index in startIdx
startIdx = []
for loc in possibleLocs:
check = byteBuffer[loc:loc+8]
if np.all(check == magicWord):
startIdx.append(loc)
# Check that startIdx is not empty
if startIdx:
# Remove the data before the first start index
if startIdx[0] > 0 and startIdx[0] < byteBufferLength:
byteBuffer[:byteBufferLength-startIdx[0]] = byteBuffer[startIdx[0]:byteBufferLength]
byteBuffer[byteBufferLength-startIdx[0]:] = np.zeros(len(byteBuffer[byteBufferLength-startIdx[0]:]),dtype = 'uint8')
byteBufferLength = byteBufferLength - startIdx[0]
# Check that there have no errors with the byte buffer length
if byteBufferLength < 0:
byteBufferLength = 0
# word array to convert 4 bytes to a 32 bit number
word = [1, 2**8, 2**16, 2**24]
# Read the total packet length
totalPacketLen = np.matmul(byteBuffer[12:12+4],word)
# Check that all the packet has been read
if (byteBufferLength >= totalPacketLen) and (byteBufferLength != 0):
magicOK = 1
# If magicOK is equal to 1 then process the message
if magicOK:
# word array to convert 4 bytes to a 32 bit number
word = [1, 2**8, 2**16, 2**24]
# Initialize the pointer index
idX = 0
# Read the header
magicNumber = byteBuffer[idX:idX+8]
idX += 8
version = format(np.matmul(byteBuffer[idX:idX+4],word),'x')
idX += 4
totalPacketLen = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
platform = format(np.matmul(byteBuffer[idX:idX+4],word),'x')
idX += 4
frameNumber = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
timeCpuCycles = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
numDetectedObj = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
numTLVs = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
# UNCOMMENT IN CASE OF SDK 2
#subFrameNumber = np.matmul(byteBuffer[idX:idX+4],word)
#idX += 4
# Read the TLV messages
for tlvIdx in range(numTLVs):
# word array to convert 4 bytes to a 32 bit number
word = [1, 2**8, 2**16, 2**24]
# Check the header of the TLV message
tlv_type = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
tlv_length = np.matmul(byteBuffer[idX:idX+4],word)
idX += 4
# Read the data depending on the TLV message
if tlv_type == MMWDEMO_UART_MSG_DETECTED_POINTS:
# word array to convert 4 bytes to a 16 bit number
word = [1, 2**8]
tlv_numObj = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
tlv_xyzQFormat = 2**np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
# Initialize the arrays
rangeIdx = np.zeros(tlv_numObj,dtype = 'int16')
dopplerIdx = np.zeros(tlv_numObj,dtype = 'int16')
peakVal = np.zeros(tlv_numObj,dtype = 'int16')
x = np.zeros(tlv_numObj,dtype = 'int16')
y = np.zeros(tlv_numObj,dtype = 'int16')
z = np.zeros(tlv_numObj,dtype = 'int16')
for objectNum in range(tlv_numObj):
# Read the data for each object
rangeIdx[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
dopplerIdx[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
peakVal[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
x[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
y[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
z[objectNum] = np.matmul(byteBuffer[idX:idX+2],word)
idX += 2
# Make the necessary corrections and calculate the rest of the data
rangeVal = rangeIdx * configParameters["rangeIdxToMeters"]
dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 - 1)] = dopplerIdx[dopplerIdx > (configParameters["numDopplerBins"]/2 - 1)] - 65535
dopplerVal = dopplerIdx * configParameters["dopplerResolutionMps"]
#x[x > 32767] = x[x > 32767] - 65536
#y[y > 32767] = y[y > 32767] - 65536
#z[z > 32767] = z[z > 32767] - 65536
x = x / tlv_xyzQFormat
y = y / tlv_xyzQFormat
z = z / tlv_xyzQFormat
# Store the data in the detObj dictionary
detObj = {"numObj": tlv_numObj, "rangeIdx": rangeIdx, "range": rangeVal, "dopplerIdx": dopplerIdx, \
"doppler": dopplerVal, "peakVal": peakVal, "x": x, "y": y, "z": z}
dataOK = 1
# Remove already processed data
if idX > 0 and byteBufferLength > idX:
shiftSize = totalPacketLen
byteBuffer[:byteBufferLength - shiftSize] = byteBuffer[shiftSize:byteBufferLength]
byteBuffer[byteBufferLength - shiftSize:] = np.zeros(len(byteBuffer[byteBufferLength - shiftSize:]),dtype = 'uint8')
byteBufferLength = byteBufferLength - shiftSize
# Check that there are no errors with the buffer length
if byteBufferLength < 0:
byteBufferLength = 0
return dataOK, frameNumber, detObj
# ------------------------------------------------------------------
# Funtion to update the data and display in the plot
def update():
dataOk = 0
global detObj
x = []
y = []
# Read and parse the received data
dataOk, frameNumber, detObj = readAndParseData14xx(Dataport, configParameters)
if dataOk and len(detObj["x"]) > 0:
#print(detObj)
x = -detObj["x"]
y = detObj["y"]
s.setData(x,y)
QtGui.QApplication.processEvents()
return dataOk
# ------------------------- MAIN -----------------------------------------
# Configurate the serial port
CLIport, Dataport = serialConfig(configFileName)
# Get the configuration parameters from the configuration file
configParameters = parseConfigFile(configFileName)
# START QtAPPfor the plot
app = QtGui.QApplication([])
# Set the plot
pg.setConfigOption('background','w')
win = pg.GraphicsWindow(title="2D scatter plot")
p = win.addPlot()
p.setXRange(-0.5,0.5)
p.setYRange(0,1.5)
p.setLabel('left',text = 'Y position (m)')
p.setLabel('bottom', text= 'X position (m)')
s = p.plot([],[],pen=None,symbol='o')
# Main loop
detObj = {}
frameData = {}
currentIndex = 0
while True:
try:
# Update the data and check if the data is okay
dataOk = update()
if dataOk:
# Store the current frame into frameData
frameData[currentIndex] = detObj
currentIndex += 1
time.sleep(0.033) # Sampling frequency of 30 Hz
# Stop the program and close everything if Ctrl + c is pressed
except KeyboardInterrupt:
CLIport.write(('sensorStop\n').encode())
CLIport.close()
Dataport.close()
win.close()
break