-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
42 lines (28 loc) · 948 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import joblib
import sklearn
import numpy as np
# utilities
from utils import clean_text
from pydantic.main import BaseModel
from fastapi import FastAPI
from fastapi.encoders import jsonable_encoder
from fastapi.responses import JSONResponse
from fastapi import FastAPI, Response
app = FastAPI()
model = joblib.load("model/multinomial_naive_bayes_with_tfidf_vectorizer.joblib")
# A Pydantic model
class PredictRequest(BaseModel):
text: str
# A Pydantic model
class PredictResponse(BaseModel):
output: str
@app.get("/ping")
def ping():
return Response(content="pong", media_type="text/plain")
@app.post('/predict', response_model=PredictResponse)
def predict(parameters: PredictRequest):
# the model prediction
predicted_sentiment = model.predict([parameters.text]) # prediction
# the final response to send back
response = {"output": "positive" if predicted_sentiment else "negative"}
return response