-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
464 lines (361 loc) · 15.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import os
import math
import networkx as nx
import numpy as np
import scipy as sp
import scipy.sparse
import torch
import torch.nn.functional as F
import community as community_louvain
from torch import Tensor
from torch.utils.data import Dataset
from grakel.utils import graph_from_networkx
from grakel.kernels import WeisfeilerLehman, VertexHistogram
def construct_nx_from_adj(adj):
G = nx.from_numpy_array(adj, create_using=nx.Graph)
to_remove = []
for node in G.nodes():
if G.degree(node) == 0:
to_remove.append(node)
G.remove_nodes_from(to_remove)
return G
def eval_autoencoder(test_loader, autoencoder, n_max_nodes, device):
Gs = []
Gs_rec = []
sims = []
for data in test_loader:
Gs = []
Gs_rec = []
data = data.to(device)
adj_rec = autoencoder(data)
adj_rec[adj_rec>0.5] = 1
adj_rec[adj_rec<=0.5] = 0
for i in range(data.A.size(0)):
Gs.append(construct_nx_from_adj(data.A[i,:,:].detach().cpu().numpy()))
Gs_rec.append(construct_nx_from_adj(adj_rec[i,:,:].detach().cpu().numpy()))
for G in Gs:
for node in G.nodes():
G.nodes[node]['label'] = 1
for G in Gs_rec:
for node in G.nodes():
G.nodes[node]['label'] = 1
Gs_pairs = [graph_from_networkx([Gs[i], Gs_rec[i]], node_labels_tag='label') for i in range(len(Gs))]
wl_kernel = WeisfeilerLehman(n_iter=3, normalize=True, base_graph_kernel=VertexHistogram)
for i in range(len(Gs_pairs)):
K = wl_kernel.fit_transform(Gs_pairs[i])
sims.append(K[0,1])
print('Average similarity:', np.mean(sims))
def handle_nan(x):
if math.isnan(x):
return float(-100)
return x
def read_stats(file):
stats = []
fread = open(file, "r")
#print(file)
for i,line in enumerate(fread):
if i == 13: continue
line = line.strip()
tokens = line.split(":")
#print(tokens[-1])
#stats.append(handle_nan(float(tokens[-1].strip())))
stats.append(float(tokens[-1].strip()))
fread.close()
return stats
def create_dataset(Gs, pos_enc_dim, max_n_nodes):
data = []
for G in Gs:
n = G.number_of_nodes()
row, col = [], []
for edge in G.edges():
row.append(edge[0])
col.append(edge[1])
row.append(edge[1])
col.append(edge[0])
x = positional_encoding(row, col, n, pos_enc_dim)
x = torch.tensor(x, dtype=torch.float)
edge_index = torch.tensor([row, col], dtype=torch.long)
adj = torch.zeros(max_n_nodes, max_n_nodes)
adj[edge_index[0,:], edge_index[1,:]] = 1
data.append(Data(x=x, edge_index=edge_index, adj=adj))
return data
class CustomDataset(Dataset):
""" Based on https://github.com/lrjconan/GRAN/blob/master/utils/data_helper.py#L192 """
def __init__(self, k, same_sample=False, ignore_first_eigv=False):
min_num_nodes=20
max_num_nodes=50
filename = f'data/custom_{min_num_nodes}_{max_num_nodes}{"_same_sample" if same_sample else ""}.pt'
self.k = k
self.ignore_first_eigv = ignore_first_eigv
if os.path.isfile(filename):
self.adjs, self.eigvals, self.eigvecs, self.n_nodes, self.max_eigval, self.min_eigval, self.same_sample, self.n_max = torch.load(filename)
print(f'Dataset {filename} loaded from file')
else:
Gs = [nx.ladder_graph(i) for i in range(10, 26)] + [nx.wheel_graph(i) for i in range(20, 51)] + [nx.cycle_graph(i) for i in range(20, 51)]+[nx.path_graph(i) for i in range(20, 51)]+[nx.star_graph(i) for i in range(19, 50)]
self.adjs = []
self.eigvals = []
self.eigvecs = []
self.n_nodes = []
self.n_max = 0
self.max_eigval = 0
self.min_eigval = 0
self.same_sample = same_sample
for G in Gs:
if G.number_of_nodes() >= min_num_nodes and G.number_of_nodes() <= max_num_nodes:
adj = torch.from_numpy(nx.to_numpy_matrix(G)).float()
#L = nx.normalized_laplacian_matrix(G).toarray()
diags = np.sum(nx.to_numpy_matrix(G), axis=0)
diags = np.squeeze(np.asarray(diags))
D = sp.sparse.diags(diags).toarray()
L = D - nx.to_numpy_matrix(G)
with sp.errstate(divide="ignore"):
diags_sqrt = 1.0 / np.sqrt(diags)
diags_sqrt[np.isinf(diags_sqrt)] = 0
DH = sp.sparse.diags(diags).toarray()
L = np.linalg.multi_dot((DH, L, DH))
L = torch.from_numpy(L).float()
eigval, eigvec = torch.linalg.eigh(L)
self.eigvals.append(eigval)
self.eigvecs.append(eigvec)
self.adjs.append(adj)
self.n_nodes.append(G.number_of_nodes())
if G.number_of_nodes() > self.n_max:
self.n_max = G.number_of_nodes()
max_eigval = torch.max(eigval)
if max_eigval > self.max_eigval:
self.max_eigval = max_eigval
min_eigval = torch.min(eigval)
if min_eigval < self.min_eigval:
self.min_eigval = min_eigval
torch.save([self.adjs, self.eigvals, self.eigvecs, self.n_nodes, self.max_eigval, self.min_eigval, self.same_sample, self.n_max], filename)
print(f'Dataset {filename} saved')
self.max_k_eigval = 0
for eigv in self.eigvals:
last_idx = self.k if self.k < len(eigv) else len(eigv) - 1
if eigv[last_idx] > self.max_k_eigval:
self.max_k_eigval = eigv[last_idx].item()
def __len__(self):
return len(self.adjs)
def __getitem__(self, idx):
if self.same_sample:
idx = self.__len__() - 1
graph = {}
graph["n_nodes"] = self.n_nodes[idx]
size_diff = self.n_max - graph["n_nodes"]
graph["adj"] = F.pad(self.adjs[idx], [0, size_diff, 0, size_diff])
eigvals = self.eigvals[idx]
eigvecs = self.eigvecs[idx]
if self.ignore_first_eigv:
eigvals = eigvals[1:]
eigvecs = eigvecs[:,1:]
size_diff += 1
graph["eigval"] = F.pad(eigvals, [0, max(0, self.n_max - eigvals.size(0))])
graph["eigvec"] = F.pad(eigvecs, [0, size_diff, 0, size_diff])
graph["mask"] = F.pad(torch.ones_like(self.adjs[idx]), [0, size_diff, 0, size_diff]).long()
return graph
def masked_instance_norm2D(x: torch.Tensor, mask: torch.Tensor, eps: float = 1e-5):
"""
x: [batch_size (N), num_objects (L), num_objects (L), features(C)]
mask: [batch_size (N), num_objects (L), num_objects (L), 1]
"""
mask = mask.view(x.size(0), x.size(1), x.size(2), 1).expand_as(x)
mean = (torch.sum(x * mask, dim=[1,2]) / torch.sum(mask, dim=[1,2])) # (N,C)
var_term = ((x - mean.unsqueeze(1).unsqueeze(1).expand_as(x)) * mask)**2 # (N,L,L,C)
var = (torch.sum(var_term, dim=[1,2]) / torch.sum(mask, dim=[1,2])) # (N,C)
mean = mean.unsqueeze(1).unsqueeze(1).expand_as(x) # (N, L, L, C)
var = var.unsqueeze(1).unsqueeze(1).expand_as(x) # (N, L, L, C)
instance_norm = (x - mean) / torch.sqrt(var + eps) # (N, L, L, C)
instance_norm = instance_norm * mask
return instance_norm
def masked_layer_norm2D(x: torch.Tensor, mask: torch.Tensor, eps: float = 1e-5):
"""
x: [batch_size (N), num_objects (L), num_objects (L), features(C)]
mask: [batch_size (N), num_objects (L), num_objects (L), 1]
"""
mask = mask.view(x.size(0), x.size(1), x.size(2), 1).expand_as(x)
mean = torch.sum(x * mask, dim=[3,2,1]) / torch.sum(mask, dim=[3,2,1]) # (N)
var_term = ((x - mean.view(-1,1,1,1).expand_as(x)) * mask)**2 # (N,L,L,C)
var = (torch.sum(var_term, dim=[3,2,1]) / torch.sum(mask, dim=[3,2,1])) # (N)
mean = mean.view(-1,1,1,1).expand_as(x) # (N, L, L, C)
var = var.view(-1,1,1,1).expand_as(x) # (N, L, L, C)
layer_norm = (x - mean) / torch.sqrt(var + eps) # (N, L, L, C)
layer_norm = layer_norm * mask
return layer_norm
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule as proposed in https://arxiv.org/abs/2102.09672
"""
steps = timesteps + 1
x = torch.linspace(0, timesteps, steps)
alphas_cumprod = torch.cos(((x / timesteps) + s) / (1 + s) * torch.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return torch.clip(betas, 0.0001, 0.9999)
def linear_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
return torch.linspace(beta_start, beta_end, timesteps)
def quadratic_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
return torch.linspace(beta_start**0.5, beta_end**0.5, timesteps) ** 2
def sigmoid_beta_schedule(timesteps):
beta_start = 0.0001
beta_end = 0.02
betas = torch.linspace(-6, 6, timesteps)
return torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
def calculate_stats_graph(G):
stats = []
# Number of nodes
num_nodes = handle_nan(float(G.number_of_nodes()))
stats.append(num_nodes)
# Number of edges
num_edges = handle_nan(float(G.number_of_edges()))
stats.append(num_edges)
# Density
density = handle_nan(float(nx.density(G)))
stats.append(density)
# Degree statistics
degrees = [deg for node, deg in G.degree()]
max_degree = handle_nan(float(max(degrees)))
stats.append(max_degree)
min_degree = handle_nan(float(min(degrees)))
stats.append(min_degree)
avg_degree = handle_nan(float(sum(degrees) / len(degrees)))
stats.append(avg_degree)
# Assortativity coefficient
assortativity = handle_nan(float(nx.degree_assortativity_coefficient(G)))
stats.append(assortativity)
# Number of triangles
triangles = nx.triangles(G)
num_triangles = handle_nan(float(sum(triangles.values()) // 3))
stats.append(num_triangles)
# Average number of triangles formed by an edge
avg_triangles = handle_nan(float(sum(triangles.values()) / num_edges))
stats.append(avg_triangles)
# Maximum number of triangles formed by an edge
max_triangles_per_edge = handle_nan(float(max(triangles.values())))
stats.append(max_triangles_per_edge)
# Average local clustering coefficient
avg_clustering_coefficient = handle_nan(float(nx.average_clustering(G)))
stats.append(avg_clustering_coefficient)
# Global clustering coefficient
global_clustering_coefficient = handle_nan(float(nx.transitivity(G)))
stats.append(global_clustering_coefficient)
# Maximum k-core
max_k_core = handle_nan(float(max(nx.core_number(G).values())))
stats.append(max_k_core)
# Lower bound of Maximum Clique
#lower_bound_max_clique = handle_nan(float(nx.graph_clique_number(G)))
#stats.append(lower_bound_max_clique)
# calculate communities
partition = community_louvain.best_partition(G)
n_communities = handle_nan(float(len(set(partition.values()))))
stats.append(n_communities)
# calculate diameter
connected_components = list(nx.connected_components(G))
# Initialize diameter to a small value
diameter = float(0)
# Iterate over connected components and find the maximum diameter
for component in connected_components:
subgraph = G.subgraph(component)
component_diameter = nx.diameter(subgraph)
diameter = handle_nan(float(max(diameter, component_diameter)))
stats.append(diameter)
return stats
def store_stats(y, y_pred, fw_name1, fw_name2):
fw1 = open(fw_name1,"w")
fw2 = open(fw_name2,"w")
for el in y:
np.savetxt(fw1, el, newline=' ')
fw1.write('\n')
fw1.close()
for el in y_pred:
np.savetxt(fw2, el, newline=' ')
fw2.write('\n')
fw2.close()
def gen_stats(G):
y_pred = calculate_stats_graph(G)
y_pred = np.nan_to_num(y_pred, nan=-100.0)
return y_pred
def precompute_missing(y, y_pred):
y = np.array(y)
y_pred = np.array(y_pred)
y = np.nan_to_num(y, nan=-100.0)
y_pred = np.nan_to_num(y_pred, nan=-100.0)
# Find indices where y is -100
indices_to_change = np.where(y == -100.0)
# Set corresponding elements in y and y_pred to 0
y[indices_to_change] = 0.0
y_pred[indices_to_change] = 0.0
zeros_per_column = np.count_nonzero(y, axis=0)
list_from_array = zeros_per_column.tolist()
dc = {}
for i in range(len(list_from_array)):
dc[i] = list_from_array[i]
return dc, y, y_pred
def sum_elements_per_column(matrix, dc):
num_rows = len(matrix)
num_cols = len(matrix[0])
column_sums = [0] * num_cols
for col in range(num_cols):
for row in range(num_rows):
column_sums[col] += matrix[row][col]
res = []
for col in range(num_cols):
x = column_sums[col]/dc[col]
res.append(x)
return res
def calculate_mean_std(x):
sm = [0 for i in range(15)]
samples = [0 for i in range(15)]
for el in x:
for i, it in enumerate(el):
if not math.isnan(it):
sm[i] += it
samples[i] += 1
mean = [k / y for k,y in zip(sm, samples)]
sm2 = [0 for i in range(16)]
std = []
for el in x:
for i, it in enumerate(el):
if not math.isnan(it):
k = (it - mean[i])**2
sm2[i] += k
std = [(k / y)**0.5 for k,y in zip(sm2, samples)]
return mean, std
def evaluation_metrics(y, y_pred, eps=1e-10):
dc, y, y_pred = precompute_missing(y, y_pred)
mse_st = (y - y_pred) ** 2
mae_st = np.absolute(y - y_pred)
mse = sum_elements_per_column(mse_st, dc)
mae = sum_elements_per_column(mae_st, dc)
#mse = [sum(x)/len(mse_st) for x in zip(*mse_st)]
#mae = [sum(x)/len(mae_st) for x in zip(*mae_st)]
a = np.absolute(y - y_pred)
b = np.absolute(y) + np.absolute(y_pred)+ eps
norm_error_st = (a/b)
norm_error = sum_elements_per_column(norm_error_st, dc)
#[sum(x)*100/len(norm_error_st) for x in zip(*norm_error_st)]
return mse, mae, norm_error
def z_score_norm(y, y_pred, mean, std, eps=1e-10):
y = np.array(y)
y_pred = np.array(y_pred)
normalized_true = (y - mean) / std
normalized_gen = (y_pred - mean) / std
dc, normalized_true, normalized_gen = precompute_missing(normalized_true, normalized_gen)
#print(np.isnan(normalized_true).any())
#print(np.isnan(normalized_gen).any())
# Calculate MSE using normalized tensors
mse_st = (normalized_true - normalized_gen) ** 2
mae_st = np.absolute(normalized_true - normalized_gen)
mse = sum_elements_per_column(mse_st, dc)
mae = sum_elements_per_column(mae_st, dc)
mse = np.sum(mse)/15
mae = np.sum(mae)/15
a = np.absolute(normalized_true - normalized_gen)
b = np.absolute(normalized_true) + np.absolute(normalized_gen) + eps
norm_error_st = (a/b)
norm_error = sum_elements_per_column(norm_error_st, dc)
norm_error = np.sum(norm_error)/15
return mse, mae, norm_error