参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
给定二叉搜索树(BST)的根节点和一个值。 你需要在BST中找到节点值等于给定值的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 NULL。
例如,
在上述示例中,如果要找的值是 5,但因为没有节点值为 5,我们应该返回 NULL。
之前我们讲了都是普通二叉树,那么接下来看看二叉搜索树。
在关于二叉树,你该了解这些!中,我们已经讲过了二叉搜索树。
二叉搜索树是一个有序树:
- 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 它的左、右子树也分别为二叉搜索树
这就决定了,二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。
本题,其实就是在二叉搜索树中搜索一个节点。那么我们来看看应该如何遍历。
- 确定递归函数的参数和返回值
递归函数的参数传入的就是根节点和要搜索的数值,返回的就是以这个搜索数值所在的节点。
代码如下:
TreeNode* searchBST(TreeNode* root, int val)
- 确定终止条件
如果root为空,或者找到这个数值了,就返回root节点。
if (root == NULL || root->val == val) return root;
- 确定单层递归的逻辑
看看二叉搜索树的单层递归逻辑有何不同。
因为二叉搜索树的节点是有序的,所以可以有方向的去搜索。
如果root->val > val,搜索左子树,如果root->val < val,就搜索右子树,最后如果都没有搜索到,就返回NULL。
代码如下:
if (root->val > val) return searchBST(root->left, val); // 注意这里加了return
if (root->val < val) return searchBST(root->right, val);
return NULL;
这里可能会疑惑,在递归遍历的时候,什么时候直接return 递归函数的返回值,什么时候不用加这个 return呢。
我们在二叉树:递归函数究竟什么时候需要返回值,什么时候不要返回值?中讲了,如果要搜索一条边,递归函数就要加返回值,这里也是一样的道理。
因为搜索到目标节点了,就要立即return了,这样才是找到节点就返回(搜索某一条边),如果不加return,就是遍历整棵树了。
整体代码如下:
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if (root == NULL || root->val == val) return root;
if (root->val > val) return searchBST(root->left, val);
if (root->val < val) return searchBST(root->right, val);
return NULL;
}
};
一提到二叉树遍历的迭代法,可能立刻想起使用栈来模拟深度遍历,使用队列来模拟广度遍历。
对于二叉搜索树可就不一样了,因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。
对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。
而对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。
例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了。
中间节点如果大于3就向左走,如果小于3就向右走,如图:
所以迭代法代码如下:
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
while (root != NULL) {
if (root->val > val) root = root->left;
else if (root->val < val) root = root->right;
else return root;
}
return NULL;
}
};
第一次看到了如此简单的迭代法,是不是感动的痛哭流涕,哭一会~
本篇我们介绍了二叉搜索树的遍历方式,因为二叉搜索树的有序性,遍历的时候要比普通二叉树简单很多。
但是一些同学很容易忽略二叉搜索树的特性,所以写出遍历的代码就未必真的简单了。
所以针对二叉搜索树的题目,一样要利用其特性。
文中我依然给出递归和迭代两种方式,可以看出写法都非常简单,就是利用了二叉搜索树有序的特点。
class Solution {
// 递归,普通二叉树
public TreeNode searchBST(TreeNode root, int val) {
if (root == null || root.val == val) {
return root;
}
TreeNode left = searchBST(root.left, val);
if (left != null) {
return left;
}
return searchBST(root.right, val);
}
}
class Solution {
// 递归,利用二叉搜索树特点,优化
public TreeNode searchBST(TreeNode root, int val) {
if (root == null || root.val == val) {
return root;
}
if (val < root.val) {
return searchBST(root.left, val);
} else {
return searchBST(root.right, val);
}
}
}
class Solution {
// 迭代,普通二叉树
public TreeNode searchBST(TreeNode root, int val) {
if (root == null || root.val == val) {
return root;
}
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
TreeNode pop = stack.pop();
if (pop.val == val) {
return pop;
}
if (pop.right != null) {
stack.push(pop.right);
}
if (pop.left != null) {
stack.push(pop.left);
}
}
return null;
}
}
class Solution {
// 迭代,利用二叉搜索树特点,优化,可以不需要栈
public TreeNode searchBST(TreeNode root, int val) {
while (root != null)
if (val < root.val) root = root.left;
else if (val > root.val) root = root.right;
else return root;
return root;
}
}
递归法:
class Solution:
def searchBST(self, root: TreeNode, val: int) -> TreeNode:
# 为什么要有返回值:
# 因为搜索到目标节点就要立即return,
# 这样才是找到节点就返回(搜索某一条边),如果不加return,就是遍历整棵树了。
if not root or root.val == val:
return root
if root.val > val:
return self.searchBST(root.left, val)
if root.val < val:
return self.searchBST(root.right, val)
迭代法:
class Solution:
def searchBST(self, root: TreeNode, val: int) -> TreeNode:
while root is not None:
if val < root.val: root = root.left
elif val > root.val: root = root.right
else: return root
return root
递归法:
//递归法
func searchBST(root *TreeNode, val int) *TreeNode {
if root==nil||root.Val==val{
return root
}
if root.Val>val{
return searchBST(root.Left,val)
}
return searchBST(root.Right,val)
}
迭代法:
//迭代法
func searchBST(root *TreeNode, val int) *TreeNode {
for root!=nil{
if root.Val>val{
root=root.Left
}else if root.Val<val{
root=root.Right
}else{
break
}
}
return root
}
递归:
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} val
* @return {TreeNode}
*/
var searchBST = function (root, val) {
if (!root || root.val === val) {
return root;
}
if (root.val > val)
return searchBST(root.left, val);
if (root.val < val)
return searchBST(root.right, val);
return null;
};
迭代:
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} val
* @return {TreeNode}
*/
var searchBST = function (root, val) {
while (root !== null) {
if (root.val > val)
root = root.left;
else if (root.val < val)
root = root.right;
else
return root;
}
return root;
};