-
Notifications
You must be signed in to change notification settings - Fork 277
/
Copy pathcomponents.py
2009 lines (1693 loc) · 64.8 KB
/
components.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import sklearn.svm
import sklearn.ensemble
import sklearn.tree
import sklearn.neighbors
import sklearn.decomposition
import sklearn.preprocessing
import sklearn.neural_network
import sklearn.linear_model
import sklearn.discriminant_analysis
import sklearn.feature_extraction.text
import sklearn.naive_bayes
import sklearn.multiclass
from functools import partial
from hyperopt.pyll import scope, as_apply
from hyperopt import hp
from .vkmeans import ColumnKMeans
from . import lagselectors
# Optional dependencies
try:
import xgboost
except ImportError:
xgboost = None
try:
import lightgbm
except ImportError:
lightgbm = None
##########################################
##==== Wrappers for sklearn modules ====##
##########################################
@scope.define
def sklearn_SVC(*args, **kwargs):
return sklearn.svm.SVC(*args, **kwargs)
@scope.define
def sklearn_SVR(*args, **kwargs):
return sklearn.svm.SVR(*args, **kwargs)
@scope.define
def ts_LagSelector(*args, **kwargs):
return lagselectors.LagSelector(*args, **kwargs)
@scope.define
def sklearn_LinearSVC(*args, **kwargs):
return sklearn.svm.LinearSVC(*args, **kwargs)
@scope.define
def sklearn_KNeighborsClassifier(*args, **kwargs):
return sklearn.neighbors.KNeighborsClassifier(*args, **kwargs)
@scope.define
def sklearn_KNeighborsRegressor(*args, **kwargs):
return sklearn.neighbors.KNeighborsRegressor(*args, **kwargs)
@scope.define
def sklearn_AdaBoostClassifier(*args, **kwargs):
return sklearn.ensemble.AdaBoostClassifier(*args, **kwargs)
@scope.define
def sklearn_AdaBoostRegressor(*args, **kwargs):
return sklearn.ensemble.AdaBoostRegressor(*args, **kwargs)
@scope.define
def sklearn_GradientBoostingClassifier(*args, **kwargs):
return sklearn.ensemble.GradientBoostingClassifier(*args, **kwargs)
@scope.define
def sklearn_GradientBoostingRegressor(*args, **kwargs):
return sklearn.ensemble.GradientBoostingRegressor(*args, **kwargs)
@scope.define
def sklearn_RandomForestClassifier(*args, **kwargs):
return sklearn.ensemble.RandomForestClassifier(*args, **kwargs)
@scope.define
def sklearn_RandomForestRegressor(*args, **kwargs):
return sklearn.ensemble.RandomForestRegressor(*args, **kwargs)
@scope.define
def sklearn_ExtraTreesClassifier(*args, **kwargs):
return sklearn.ensemble.ExtraTreesClassifier(*args, **kwargs)
@scope.define
def sklearn_ExtraTreesRegressor(*args, **kwargs):
return sklearn.ensemble.ExtraTreesRegressor(*args, **kwargs)
@scope.define
def sklearn_DecisionTreeClassifier(*args, **kwargs):
return sklearn.tree.DecisionTreeClassifier(*args, **kwargs)
@scope.define
def sklearn_Lasso(*args, **kwargs):
return sklearn.linear_model.Lasso(*args, **kwargs)
@scope.define
def sklearn_ElasticNet(*args, **kwargs):
return sklearn.linear_model.ElasticNet(*args, **kwargs)
@scope.define
def sklearn_SGDClassifier(*args, **kwargs):
return sklearn.linear_model.SGDClassifier(*args, **kwargs)
@scope.define
def sklearn_SGDRegressor(*args, **kwargs):
return sklearn.linear_model.SGDRegressor(*args, **kwargs)
@scope.define
def sklearn_XGBClassifier(*args, **kwargs):
if xgboost is None:
raise ImportError('No module named xgboost')
return xgboost.XGBClassifier(*args, **kwargs)
@scope.define
def sklearn_XGBRegressor(*args, **kwargs):
if xgboost is None:
raise ImportError('No module named xgboost')
return xgboost.XGBRegressor(*args, **kwargs)
@scope.define
def sklearn_LGBMClassifier(*args, **kwargs):
if lightgbm is None:
raise ImportError('No module named lightgbm')
return lightgbm.LGBMClassifier(*args, **kwargs)
@scope.define
def sklearn_LGBMRegressor(*args, **kwargs):
if lightgbm is None:
raise ImportError('No module named lightgbm')
return lightgbm.LGBMRegressor(*args, **kwargs)
# @scope.define
# def sklearn_Ridge(*args, **kwargs):
# return sklearn.linear_model.Ridge(*args, **kwargs)
@scope.define
def sklearn_PassiveAggressiveClassifier(*args, **kwargs):
return sklearn.linear_model.PassiveAggressiveClassifier(*args, **kwargs)
@scope.define
def sklearn_LinearDiscriminantAnalysis(*args, **kwargs):
return sklearn.discriminant_analysis.LinearDiscriminantAnalysis(*args, **kwargs)
@scope.define
def sklearn_QuadraticDiscriminantAnalysis(*args, **kwargs):
return sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis(*args, **kwargs)
@scope.define
def sklearn_MultinomialNB(*args, **kwargs):
return sklearn.naive_bayes.MultinomialNB(*args, **kwargs)
@scope.define
def sklearn_GaussianNB(*args, **kwargs):
return sklearn.naive_bayes.GaussianNB(*args, **kwargs)
@scope.define
def sklearn_OneVsRestClassifier(*args, **kwargs):
return sklearn.multiclass.OneVsRestClassifier(*args, **kwargs)
@scope.define
def sklearn_OneVsOneClassifier(*args, **kwargs):
return sklearn.multiclass.OneVsOneClassifier(*args, **kwargs)
@scope.define
def sklearn_OutputCodeClassifier(*args, **kwargs):
return sklearn.multiclass.OutputCodeClassifier(*args, **kwargs)
@scope.define
def sklearn_PCA(*args, **kwargs):
return sklearn.decomposition.PCA(*args, **kwargs)
@scope.define
def sklearn_Tfidf(*args, **kwargs):
return sklearn.feature_extraction.text.TfidfVectorizer(*args, **kwargs)
@scope.define
def sklearn_StandardScaler(*args, **kwargs):
return sklearn.preprocessing.StandardScaler(*args, **kwargs)
@scope.define
def sklearn_MinMaxScaler(*args, **kwargs):
return sklearn.preprocessing.MinMaxScaler(*args, **kwargs)
@scope.define
def sklearn_Normalizer(*args, **kwargs):
return sklearn.preprocessing.Normalizer(*args, **kwargs)
@scope.define
def sklearn_OneHotEncoder(*args, **kwargs):
return sklearn.preprocessing.OneHotEncoder(*args, **kwargs)
@scope.define
def sklearn_BernoulliRBM(*args, **kwargs):
return sklearn.neural_network.BernoulliRBM(*args, **kwargs)
@scope.define
def sklearn_ColumnKMeans(*args, **kwargs):
return ColumnKMeans(*args, **kwargs)
@scope.define
def sklearn_GaussianRandomProjection(*args, **kwargs):
return sklearn.random_projection.GaussianRandomProjection(*args, **kwargs)
@scope.define
def sklearn_SparseRandomProjection(*args, **kwargs):
return sklearn.random_projection.SparseRandomProjection(*args, **kwargs)
@scope.define
def patience_param(x):
"""
Mark a hyperparameter as having a simple monotonic increasing
relationship with both CPU time and the goodness of the model.
"""
# -- TODO: make this do something!
return x
@scope.define
def inv_patience_param(x):
"""
Mark a hyperparameter as having a simple monotonic decreasing
relationship with both CPU time and the goodness of the model.
"""
# -- TODO: make this do something!
return x
##############################
##==== Global variables ====##
##############################
_svm_default_cache_size = 512
###############################################
##==== Various hyperparameter generators ====##
###############################################
def hp_bool(name):
return hp.choice(name, [False, True])
def _svm_gamma(name, n_features=1):
'''Generator of default gamma values for SVMs.
This setting is based on the following rationales:
1. The gamma hyperparameter is basically an amplifier for the
original dot product or l2 norm.
2. The original dot product or l2 norm shall be normalized by
the number of features first.
'''
# -- making these non-conditional variables
# probably helps the GP algorithm generalize
# assert n_features >= 1
return hp.loguniform(name,
np.log(1. / n_features * 1e-3),
np.log(1. / n_features * 1e3))
def _svm_degree(name):
return hp.quniform(name, 1.5, 6.5, 1)
def _svm_max_iter(name):
return hp.qloguniform(name, np.log(1e7), np.log(1e9), 1)
def _svm_C(name):
return hp.loguniform(name, np.log(1e-5), np.log(1e5))
def _svm_tol(name):
return hp.loguniform(name, np.log(1e-5), np.log(1e-2))
def _svm_int_scaling(name):
return hp.loguniform(name, np.log(1e-1), np.log(1e1))
def _svm_epsilon(name):
return hp.loguniform(name, np.log(1e-3), np.log(1e3))
def _svm_loss_penalty_dual(name):
"""
The combination of penalty='l1' and loss='hinge' is not supported
penalty='l2' and loss='hinge' is only supported when dual='true'
penalty='l1' is only supported when dual='false'.
"""
return hp.choice(name, [
('hinge', 'l2', True),
('squared_hinge', 'l2', True),
('squared_hinge', 'l1', False),
('squared_hinge', 'l2', False)
])
def _knn_metric_p(name, sparse_data=False, metric=None, p=None):
if sparse_data:
return ('euclidean', 2)
elif metric == 'euclidean':
return (metric, 2)
elif metric == 'manhattan':
return (metric, 1)
elif metric == 'chebyshev':
return (metric, 0)
elif metric == 'minkowski':
assert p is not None
return (metric, p)
elif metric is None:
return hp.pchoice(name, [
(0.55, ('euclidean', 2)),
(0.15, ('manhattan', 1)),
(0.15, ('chebyshev', 0)),
(0.15, ('minkowski', _knn_p(name + '.p'))),
])
else:
return (metric, p) # undefined, simply return user input.
def _knn_p(name):
return hp.quniform(name, 2.5, 5.5, 1)
def _knn_neighbors(name):
return scope.int(hp.qloguniform(name, np.log(0.5), np.log(50.5), 1))
def _knn_weights(name):
return hp.choice(name, ['uniform', 'distance'])
def _trees_n_estimators(name):
return scope.int(hp.qloguniform(name, np.log(9.5), np.log(3000.5), 1))
def _trees_criterion(name):
return hp.choice(name, ['gini', 'entropy'])
def _trees_max_features(name):
return hp.pchoice(name, [
(0.2, 'sqrt'), # most common choice.
(0.1, 'log2'), # less common choice.
(0.1, None), # all features, less common choice.
(0.6, hp.uniform(name + '.frac', 0., 1.))
])
def _trees_max_depth(name):
return hp.pchoice(name, [
(0.7, None), # most common choice.
# Try some shallow trees.
(0.1, 2),
(0.1, 3),
(0.1, 4),
])
def _trees_min_samples_split(name):
return 2
def _trees_min_samples_leaf(name):
return hp.choice(name, [
1, # most common choice.
scope.int(hp.qloguniform(name + '.gt1', np.log(1.5), np.log(50.5), 1))
])
def _trees_bootstrap(name):
return hp.choice(name, [True, False])
def _boosting_n_estimators(name):
return scope.int(hp.qloguniform(name, np.log(10.5), np.log(1000.5), 1))
def _ada_boost_learning_rate(name):
return hp.lognormal(name, np.log(0.01), np.log(10.0))
def _ada_boost_loss(name):
return hp.choice(name, ['linear', 'square', 'exponential'])
def _ada_boost_algo(name):
return hp.choice(name, ['SAMME', 'SAMME.R'])
def _grad_boosting_reg_loss_alpha(name):
return hp.choice(name, [
('ls', 0.9),
('lad', 0.9),
('huber', hp.uniform(name + '.alpha', 0.85, 0.95)),
('quantile', 0.5)
])
def _grad_boosting_clf_loss(name):
return hp.choice(name, ['deviance', 'exponential'])
def _grad_boosting_learning_rate(name):
return hp.lognormal(name, np.log(0.01), np.log(10.0))
def _grad_boosting_subsample(name):
return hp.pchoice(name, [
(0.2, 1.0), # default choice.
(0.8, hp.uniform(name + '.sgb', 0.5, 1.0)) # stochastic grad boosting.
])
def _sgd_penalty(name):
return hp.pchoice(name, [
(0.40, 'l2'),
(0.35, 'l1'),
(0.25, 'elasticnet')
])
def _sgd_alpha(name):
return hp.loguniform(name, np.log(1e-6), np.log(1e-1))
def _sgd_l1_ratio(name):
return hp.uniform(name, 0, 1)
def _sgd_epsilon(name):
return hp.loguniform(name, np.log(1e-7), np.log(1))
def _sgdc_learning_rate(name):
return hp.pchoice(name, [
(0.50, 'optimal'),
(0.25, 'invscaling'),
(0.25, 'constant')
])
def _sgdr_learning_rate(name):
return hp.pchoice(name, [
(0.50, 'invscaling'),
(0.25, 'optimal'),
(0.25, 'constant')
])
def _sgd_eta0(name):
return hp.loguniform(name, np.log(1e-5), np.log(1e-1))
def _sgd_power_t(name):
return hp.uniform(name, 0, 1)
def _random_state(name, random_state):
if random_state is None:
return hp.randint(name, 5)
else:
return random_state
def _class_weight(name):
return hp.choice(name, [None, 'balanced'])
##############################################
##==== SVM hyperparameters search space ====##
##############################################
def _svm_hp_space(
name_func,
kernel,
n_features=1,
C=None,
gamma=None,
coef0=None,
degree=None,
shrinking=None,
tol=None,
max_iter=None,
verbose=False,
cache_size=_svm_default_cache_size):
'''Generate SVM hyperparamters search space
'''
if kernel in ['linear', 'rbf', 'sigmoid']:
degree_ = 1
else:
degree_ = (_svm_degree(name_func('degree'))
if degree is None else degree)
if kernel in ['linear']:
gamma_ = 'auto'
else:
gamma_ = (_svm_gamma(name_func('gamma'), n_features=1)
if gamma is None else gamma)
gamma_ /= n_features # make gamma independent of n_features.
if kernel in ['linear', 'rbf']:
coef0_ = 0.0
elif coef0 is None:
if kernel == 'poly':
coef0_ = hp.pchoice(name_func('coef0'), [
(0.3, 0),
(0.7, gamma_ * hp.uniform(name_func('coef0val'), 0., 10.))
])
elif kernel == 'sigmoid':
coef0_ = hp.pchoice(name_func('coef0'), [
(0.3, 0),
(0.7, gamma_ * hp.uniform(name_func('coef0val'), -10., 10.))
])
else:
pass
else:
coef0_ = coef0
hp_space = dict(
kernel=kernel,
C=_svm_C(name_func('C')) if C is None else C,
gamma=gamma_,
coef0=coef0_,
degree=degree_,
shrinking=(hp_bool(name_func('shrinking'))
if shrinking is None else shrinking),
tol=_svm_tol(name_func('tol')) if tol is None else tol,
max_iter=(_svm_max_iter(name_func('maxiter'))
if max_iter is None else max_iter),
verbose=verbose,
cache_size=cache_size)
return hp_space
def _svc_hp_space(name_func, random_state=None, probability=False):
'''Generate SVC specific hyperparamters
'''
hp_space = dict(
random_state = _random_state(name_func('rstate'),random_state),
probability=probability
)
return hp_space
def _svr_hp_space(name_func, epsilon=None):
'''Generate SVR specific hyperparamters
'''
hp_space = {}
hp_space['epsilon'] = (_svm_epsilon(name_func('epsilon'))
if epsilon is None else epsilon)
return hp_space
#########################################
##==== SVM classifier constructors ====##
#########################################
def svc_kernel(name, kernel, random_state=None, probability=False, **kwargs):
"""
Return a pyll graph with hyperparamters that will construct
a sklearn.svm.SVC model with a user specified kernel.
See help(hpsklearn.components._svm_hp_space) for info on additional SVM
arguments.
"""
def _name(msg):
return '%s.%s_%s' % (name, kernel, msg)
hp_space = _svm_hp_space(_name, kernel=kernel, **kwargs)
hp_space.update(_svc_hp_space(_name, random_state, probability))
return scope.sklearn_SVC(**hp_space)
def svc_linear(name, **kwargs):
'''Simply use the svc_kernel function with kernel fixed as linear to
return an SVC object.
'''
return svc_kernel(name, kernel='linear', **kwargs)
def svc_rbf(name, **kwargs):
'''Simply use the svc_kernel function with kernel fixed as rbf to
return an SVC object.
'''
return svc_kernel(name, kernel='rbf', **kwargs)
def svc_poly(name, **kwargs):
'''Simply use the svc_kernel function with kernel fixed as poly to
return an SVC object.
'''
return svc_kernel(name, kernel='poly', **kwargs)
def svc_sigmoid(name, **kwargs):
'''Simply use the svc_kernel function with kernel fixed as sigmoid to
return an SVC object.
'''
return svc_kernel(name, kernel='sigmoid', **kwargs)
def svc(name, kernels=['linear', 'rbf', 'poly', 'sigmoid'], **kwargs):
svms = {
'linear': partial(svc_linear, name=name),
'rbf': partial(svc_rbf, name=name),
'poly': partial(svc_poly, name=name),
'sigmoid': partial(svc_sigmoid, name=name),
}
choices = [svms[kern](**kwargs) for kern in kernels]
if len(choices) == 1:
rval = choices[0]
else:
rval = hp.choice('%s.kernel' % name, choices)
return rval
########################################
##==== SVM regressor constructors ====##
########################################
def svr_kernel(name, kernel, epsilon=None, **kwargs):
"""
Return a pyll graph with hyperparamters that will construct
a sklearn.svm.SVR model with a user specified kernel.
Args:
epsilon([float]): tolerance on regression errors.
See help(hpsklearn.components._svm_hp_space) for info on additional SVM
arguments.
"""
def _name(msg):
return '%s.%s_%s' % (name, kernel, msg)
hp_space = _svm_hp_space(_name, kernel=kernel, **kwargs)
hp_space.update(_svr_hp_space(_name, epsilon))
return scope.sklearn_SVR(**hp_space)
def svr_linear(name, **kwargs):
'''Simply use the svr_kernel function with kernel fixed as linear to
return an SVR object.
'''
return svr_kernel(name, kernel='linear', **kwargs)
def svr_rbf(name, **kwargs):
'''Simply use the svr_kernel function with kernel fixed as rbf to
return an SVR object.
'''
return svr_kernel(name, kernel='rbf', **kwargs)
def svr_poly(name, **kwargs):
'''Simply use the svr_kernel function with kernel fixed as poly to
return an SVR object.
'''
return svr_kernel(name, kernel='poly', **kwargs)
def svr_sigmoid(name, **kwargs):
'''Simply use the svr_kernel function with kernel fixed as sigmoid to
return an SVR object.
'''
return svr_kernel(name, kernel='sigmoid', **kwargs)
def svr(name, kernels=['linear', 'rbf', 'poly', 'sigmoid'], **kwargs):
svms = {
'linear': partial(svr_linear, name=name),
'rbf': partial(svr_rbf, name=name),
'poly': partial(svr_poly, name=name),
'sigmoid': partial(svr_sigmoid, name=name),
}
choices = [svms[kern](**kwargs) for kern in kernels]
if len(choices) == 1:
rval = choices[0]
else:
rval = hp.choice('%s.kernel' % name, choices)
return rval
##################################################
##==== Liblinear SVM classifier constructor ====##
##################################################
def liblinear_svc(name,
C=None,
loss=None,
penalty=None,
dual=None,
tol=None,
multi_class=None,
fit_intercept=True,
intercept_scaling=None,
class_weight='choose',
random_state=None,
verbose=False,
max_iter=1000):
def _name(msg):
return '%s.%s_%s' % (name, 'linear_svc', msg)
loss_penalty_dual = _svm_loss_penalty_dual(_name('loss_penalty_dual'))
rval = scope.sklearn_LinearSVC(
C=_svm_C(_name('C')) if C is None else C,
loss=loss_penalty_dual[0] if loss is None else loss,
penalty=loss_penalty_dual[1] if penalty is None else penalty,
dual=loss_penalty_dual[2] if dual is None else dual,
tol=_svm_tol(_name('tol')) if tol is None else tol,
multi_class=(hp.choice(_name('multiclass'), ['ovr', 'crammer_singer'])
if multi_class is None else multi_class),
fit_intercept=fit_intercept,
intercept_scaling=(_svm_int_scaling(_name('intscaling'))
if intercept_scaling is None else intercept_scaling),
class_weight=(_class_weight(_name('clsweight'))
if class_weight == 'choose' else class_weight),
random_state=_random_state(_name('rstate'), random_state),
verbose=verbose,
max_iter=max_iter,
)
return rval
##############################################
##==== KNN hyperparameters search space ====##
##############################################
def _knn_hp_space(
name_func,
sparse_data=False,
n_neighbors=None,
weights=None,
algorithm='auto',
leaf_size=30,
metric=None,
p=None,
metric_params=None,
n_jobs=1):
'''Generate KNN hyperparameters search space
'''
metric_p = _knn_metric_p(name_func('metric_p'), sparse_data, metric, p)
hp_space = dict(
n_neighbors=(_knn_neighbors(name_func('neighbors'))
if n_neighbors is None else n_neighbors),
weights=(_knn_weights(name_func('weights'))
if weights is None else weights),
algorithm=algorithm,
leaf_size=leaf_size,
metric=metric_p[0] if metric is None else metric,
p=metric_p[1] if p is None else p,
metric_params=metric_params,
n_jobs=n_jobs)
return hp_space
###################################################
##==== KNN classifier/regressor constructors ====##
###################################################
def knn(name, **kwargs):
'''
Return a pyll graph with hyperparamters that will construct
a sklearn.neighbors.KNeighborsClassifier model.
See help(hpsklearn.components._knn_hp_space) for info on available KNN
arguments.
'''
def _name(msg):
return '%s.%s_%s' % (name, 'knc', msg)
hp_space = _knn_hp_space(_name, **kwargs)
return scope.sklearn_KNeighborsClassifier(**hp_space)
def knn_regression(name, **kwargs):
'''
Return a pyll graph with hyperparamters that will construct
a sklearn.neighbors.KNeighborsRegressor model.
See help(hpsklearn.components._knn_hp_space) for info on available KNN
arguments.
'''
def _name(msg):
return '%s.%s_%s' % (name, 'knr', msg)
hp_space = _knn_hp_space(_name, **kwargs)
return scope.sklearn_KNeighborsRegressor(**hp_space)
####################################################################
##==== Random forest/extra trees hyperparameters search space ====##
####################################################################
def _trees_hp_space(
name_func,
n_estimators=None,
max_features=None,
max_depth=None,
min_samples_split=None,
min_samples_leaf=None,
bootstrap=None,
oob_score=False,
n_jobs=1,
random_state=None,
verbose=False):
'''Generate trees ensemble hyperparameters search space
'''
hp_space = dict(
n_estimators=(_trees_n_estimators(name_func('n_estimators'))
if n_estimators is None else n_estimators),
max_features=(_trees_max_features(name_func('max_features'))
if max_features is None else max_features),
max_depth=(_trees_max_depth(name_func('max_depth'))
if max_depth is None else max_depth),
min_samples_split=(_trees_min_samples_split(name_func('min_samples_split'))
if min_samples_split is None else min_samples_split),
min_samples_leaf=(_trees_min_samples_leaf(name_func('min_samples_leaf'))
if min_samples_leaf is None else min_samples_leaf),
bootstrap=(_trees_bootstrap(name_func('bootstrap'))
if bootstrap is None else bootstrap),
oob_score=oob_score,
n_jobs=n_jobs,
random_state=_random_state(name_func('rstate'), random_state),
verbose=verbose,
)
return hp_space
#############################################################
##==== Random forest classifier/regressor constructors ====##
#############################################################
def random_forest(name, criterion=None, **kwargs):
'''
Return a pyll graph with hyperparamters that will construct
a sklearn.ensemble.RandomForestClassifier model.
Args:
criterion([str]): choose 'gini' or 'entropy'.
See help(hpsklearn.components._trees_hp_space) for info on additional
available random forest/extra trees arguments.
'''
def _name(msg):
return '%s.%s_%s' % (name, 'rfc', msg)
hp_space = _trees_hp_space(_name, **kwargs)
hp_space['criterion'] = (_trees_criterion(_name('criterion'))
if criterion is None else criterion)
return scope.sklearn_RandomForestClassifier(**hp_space)
def random_forest_regression(name, criterion='mse', **kwargs):
'''
Return a pyll graph with hyperparamters that will construct
a sklearn.ensemble.RandomForestRegressor model.
Args:
criterion([str]): 'mse' is the only choice.
See help(hpsklearn.components._trees_hp_space) for info on additional
available random forest/extra trees arguments.
'''
def _name(msg):
return '%s.%s_%s' % (name, 'rfr', msg)
hp_space = _trees_hp_space(_name, **kwargs)
hp_space['criterion'] = criterion
return scope.sklearn_RandomForestRegressor(**hp_space)
###################################################
##==== AdaBoost hyperparameters search space ====##
###################################################
def _ada_boost_hp_space(
name_func,
base_estimator=None,
n_estimators=None,
learning_rate=None,
random_state=None):
'''Generate AdaBoost hyperparameters search space
'''
hp_space = dict(
base_estimator=base_estimator,
n_estimators=(_boosting_n_estimators(name_func('n_estimators'))
if n_estimators is None else n_estimators),
learning_rate=(_ada_boost_learning_rate(name_func('learning_rate'))
if learning_rate is None else learning_rate),
random_state=_random_state(name_func('rstate'), random_state)
)
return hp_space
########################################################
##==== AdaBoost classifier/regressor constructors ====##
########################################################
def ada_boost(name, algorithm=None, **kwargs):
'''
Return a pyll graph with hyperparamters that will construct
a sklearn.ensemble.AdaBoostClassifier model.
Args:
algorithm([str]): choose from ['SAMME', 'SAMME.R']
See help(hpsklearn.components._ada_boost_hp_space) for info on
additional available AdaBoost arguments.
'''
def _name(msg):
return '%s.%s_%s' % (name, 'ada_boost', msg)
hp_space = _ada_boost_hp_space(_name, **kwargs)
hp_space['algorithm'] = (_ada_boost_algo(_name('algo')) if
algorithm is None else algorithm)
return scope.sklearn_AdaBoostClassifier(**hp_space)
def ada_boost_regression(name, loss=None, **kwargs):
'''
Return a pyll graph with hyperparamters that will construct
a sklearn.ensemble.AdaBoostRegressor model.
Args:
loss([str]): choose from ['linear', 'square', 'exponential']
See help(hpsklearn.components._ada_boost_hp_space) for info on
additional available AdaBoost arguments.
'''
def _name(msg):
return '%s.%s_%s' % (name, 'ada_boost_reg', msg)
hp_space = _ada_boost_hp_space(_name, **kwargs)
hp_space['loss'] = (_ada_boost_loss(_name('loss')) if
loss is None else loss)
return scope.sklearn_AdaBoostRegressor(**hp_space)
###########################################################
##==== GradientBoosting hyperparameters search space ====##
###########################################################
def _grad_boosting_hp_space(
name_func,
learning_rate=None,
n_estimators=None,
subsample=None,
min_samples_split=None,
min_samples_leaf=None,
max_depth=None,
init=None,
random_state=None,
max_features=None,
verbose=0,
max_leaf_nodes=None,
warm_start=False):
'''Generate GradientBoosting hyperparameters search space
'''
hp_space = dict(
learning_rate=(_grad_boosting_learning_rate(name_func('learning_rate'))
if learning_rate is None else learning_rate),
n_estimators=(_boosting_n_estimators(name_func('n_estimators'))
if n_estimators is None else n_estimators),
subsample=(_grad_boosting_subsample(name_func('subsample'))
if subsample is None else subsample),
min_samples_split=(_trees_min_samples_split(name_func('min_samples_split'))
if min_samples_split is None else min_samples_split),
min_samples_leaf=(_trees_min_samples_leaf(name_func('min_samples_leaf'))
if min_samples_leaf is None else min_samples_leaf),
max_depth=(_trees_max_depth(name_func('max_depth'))
if max_depth is None else max_depth),
init=init,
random_state=_random_state(name_func('rstate'), random_state),
max_features=(_trees_max_features(name_func('max_features'))
if max_features is None else max_features),
warm_start=warm_start,
)
return hp_space
################################################################
##==== GradientBoosting classifier/regressor constructors ====##
################################################################
def gradient_boosting(name, loss=None, **kwargs):
'''
Return a pyll graph with hyperparamters that will construct
a sklearn.ensemble.GradientBoostingClassifier model.
Args:
loss([str]): choose from ['deviance', 'exponential']
See help(hpsklearn.components._grad_boosting_hp_space) for info on
additional available GradientBoosting arguments.
'''
def _name(msg):
return '%s.%s_%s' % (name, 'gradient_boosting', msg)
hp_space = _grad_boosting_hp_space(_name, **kwargs)
hp_space['loss'] = (_grad_boosting_clf_loss(_name('loss'))
if loss is None else loss)
return scope.sklearn_GradientBoostingClassifier(**hp_space)
def gradient_boosting_regression(name, loss=None, alpha=None, **kwargs):
'''
Return a pyll graph with hyperparamters that will construct
a sklearn.ensemble.GradientBoostingRegressor model.
Args:
loss([str]): choose from ['ls', 'lad', 'huber', 'quantile']
alpha([float]): alpha parameter for huber and quantile losses.
Must be within [0.0, 1.0].
See help(hpsklearn.components._grad_boosting_hp_space) for info on
additional available GradientBoosting arguments.
'''
def _name(msg):
return '%s.%s_%s' % (name, 'gradient_boosting_reg', msg)
loss_alpha = _grad_boosting_reg_loss_alpha(_name('loss_alpha'))
hp_space = _grad_boosting_hp_space(_name, **kwargs)
hp_space['loss'] = loss_alpha[0] if loss is None else loss
hp_space['alpha'] = loss_alpha[1] if alpha is None else alpha
return scope.sklearn_GradientBoostingRegressor(**hp_space)
###########################################################
##==== Extra trees classifier/regressor constructors ====##
###########################################################
def extra_trees(name, criterion=None, **kwargs):
'''
Return a pyll graph with hyperparamters that will construct
a sklearn.ensemble.ExtraTreesClassifier model.
Args:
criterion([str]): choose 'gini' or 'entropy'.
See help(hpsklearn.components._trees_hp_space) for info on additional
available random forest/extra trees arguments.
'''
def _name(msg):
return '%s.%s_%s' % (name, 'etc', msg)
hp_space = _trees_hp_space(_name, **kwargs)
hp_space['criterion'] = (_trees_criterion(_name('criterion'))
if criterion is None else criterion)
return scope.sklearn_ExtraTreesClassifier(**hp_space)
def extra_trees_regression(name, criterion='mse', **kwargs):
'''
Return a pyll graph with hyperparamters that will construct
a sklearn.ensemble.ExtraTreesRegressor model.
Args:
criterion([str]): 'mse' is the only choice.
See help(hpsklearn.components._trees_hp_space) for info on additional
available random forest/extra trees arguments.
'''