-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_a2c_script.py
160 lines (150 loc) · 6.43 KB
/
run_a2c_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import datetime
import os
import pprint
import numpy as np
import torch
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import VectorReplayBuffer
from utils.customize_collector import Collector
from tianshou.policy import A2CPolicy
#from utils.customize_policy import A2CPolicy
from tianshou.utils.net.common import Net
from tianshou.trainer import onpolicy_trainer
from tianshou.utils.net.common import ActorCritic
from tianshou.utils.net.discrete import Actor, Critic
from tianshou.env import DummyVectorEnv, SubprocVectorEnv, ShmemVectorEnv
# our BIM environment
from utils.wandb_logger import WandbLogger
from Construction3DEnv_h import Construct3DEnvObs
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--scale-obs", type=int, default=0)
parser.add_argument("--buffer-size", type=int, default=100000)
parser.add_argument("--lr", type=float, default=7e-4)
parser.add_argument("--gamma", type=float, default=0.9)
parser.add_argument("--epoch", type=int, default=200)
parser.add_argument("--step-per-epoch", type=int, default=10000)
parser.add_argument("--step-per-collect", type=int, default=80)
parser.add_argument("--repeat-per-collect", type=int, default=1)
parser.add_argument("--batch-size", type=int, default=256)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[256, 256])
parser.add_argument("--training-num", type=int, default=16)
parser.add_argument("--test-num", type=int, default=20)
parser.add_argument("--rew-norm", type=int, default=False)
parser.add_argument("--vf-coef", type=float, default=0.5)
parser.add_argument("--ent-coef", type=float, default=0.01)
parser.add_argument("--gae-lambda", type=float, default=0)
parser.add_argument("--lr-decay", type=int, default=True)
parser.add_argument("--max-grad-norm", type=float, default=0.5)
parser.add_argument("--value-clip", type=int, default=0)
parser.add_argument("--norm-adv", type=int, default=1)
parser.add_argument("--recompute-adv", type=int, default=0)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu")
parser.add_argument('--env-id', type=int, default=1, help='ID of environments')
parser.add_argument('--task-id', type=int, default=1, help='Task ID of the current environment')
parser.add_argument('--norm-obs', action='store_true', help='If normalise the observation')
parser.add_argument("--save-ckpt", action='store_true', help='If save checkpoints')
return parser.parse_args()
def test_a2c(args=get_args()):
# create the dummy environment
env = Construct3DEnvObs(env_id=args.env_id, task_id=args.task_id)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# create the training and test environment
train_envs = ShmemVectorEnv(
[lambda: Construct3DEnvObs(env_id=args.env_id, task_id=args.task_id, normalise=args.norm_obs) for _ in range(args.training_num)]
)
# test_envs = gym.make(args.task)
test_envs = ShmemVectorEnv(
[lambda: Construct3DEnvObs(env_id=args.env_id, task_id=args.task_id, normalise=args.norm_obs) for _ in range(args.test_num)]
)
# should be N_FRAMES x H x W
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# define model
actor_net = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
).to(args.device)
critic_net = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
).to(args.device)
# actor critic
actor = Actor(actor_net, args.action_shape, device=args.device, softmax_output=False)
critic = Critic(critic_net, device=args.device)
optim = torch.optim.RMSprop(ActorCritic(actor, critic).parameters(), lr=args.lr, eps=1e-5, alpha=0.99)
#optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
lr_scheduler = None
if args.lr_decay:
# decay learning rate to 0 linearly
max_update_num = np.ceil(
args.step_per_epoch / args.step_per_collect
) * args.epoch
lr_scheduler = LambdaLR(
optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num
)
# define policy
def dist(p):
return torch.distributions.Categorical(logits=p)
policy = A2CPolicy(
actor,
critic,
optim,
dist,
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
max_grad_norm=args.max_grad_norm,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
action_scaling=False,
lr_scheduler=lr_scheduler,
action_space=env.action_space,
).to(args.device)
# when you have enough RAM
buffer = VectorReplayBuffer(
args.buffer_size,
buffer_num=len(train_envs),
)
# collector
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=False)
# log
log_path = '{}/{}_logs/env{}/scene{}/seed{}'.format(args.logdir, 'a2c', args.env_id, args.task_id, args.seed)
# setup the wandb
logger = WandbLogger(project="bim-benchmark", entity=None, \
group='Env_{}_Scene_{}'.format(args.env_id, args.task_id), \
name='e{}s{}_{}_{}'.format(args.env_id, args.task_id, 'a2c', args.seed))
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger.load(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
# trainer
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.repeat_per_collect,
args.test_num,
args.batch_size,
save_best_fn=save_best_fn if args.save_ckpt else None,
step_per_collect=args.step_per_collect,
logger=logger,
test_in_train=False,
)
pprint.pprint(result)
if __name__ == "__main__":
test_a2c(get_args())