This module provides scripts for downloading and plotting the results of the experiments in our paper. The results are stored in Weights | Biases and can be downloaded using the scripts in the download folder. The plotting scripts are located in the plotting folder. Calculating the core results in the paper can be done using the cl_metrics.py script.
To install the results module, run the following command:
$ pip install COOM[results]
For running the experiments in our paper please follow the instructions in the continual learning (CL) module README.md.
We recommend using Weights | Biases to log your experiments. Having done so, you can use the following scripts to download the results:
- Continual Learning Data - cl_data.py
python cl_data.py --project <YOUR_WANDB_PROJECT> --sequence <SEQUENCE>
- Single Run Data - single_data.py
python single_data.py --project <YOUR_WANDB_PROJECT> --sequence <SEQUENCE>
- Single Run Data of hard (COC) environments - single_data.py
python single_data_hard.py --project <YOUR_WANDB_PROJECT> --sequence <SEQUENCE>
- Action Distribution Data - action_data.py
- For training data run
python single_data_hard.py --project <YOUR_WANDB_PROJECT> --sequence <SEQUENCE>
- For evaluation data run
python single_data_hard.py --project <YOUR_WANDB_PROJECT> --sequence <SEQUENCE> --test_envs <TEST_ENVS>
- For example, getting the data of all tasks of the CO8 sequence can be done by running
python single_data_hard.py --project <YOUR_WANDB_PROJECT> --sequence CO8 --test_envs 0 1 2 3 4 5 6 7
- Runtime Data - runtime_data.py
- For memory usage data run
python runtime_data.py --project <YOUR_WANDB_PROJECT> --sequence <SEQUENCE> --metric system.proc.memory.rssMB
- For walltime data run
python runtime_data.py --project <YOUR_WANDB_PROJECT> --sequence <SEQUENCE> --metric walltime
Figures from the paper can be drawn using the plotting scripts.
python plot_results_envs.py --sequence <SEQUENCE> --metric <METRIC>
python plot_results_methods.py --sequence <SEQUENCE> --metric <METRIC>
The main results displayed in our paper can be calculated using cl_metrics.py.
python cl_metrics.py --sequences CD4 CO4 CD8 CO8 COC --methods packnet mas agem l2 ewc vcl fine_tuning clonex perfect_memory