forked from pytorch/rl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ddpg.py
193 lines (157 loc) · 6.21 KB
/
ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""DDPG Example.
This is a simple self-contained example of a DDPG training script.
It supports state environments like MuJoCo.
The helper functions are coded in the utils.py associated with this script.
"""
import time
import hydra
import numpy as np
import torch
import torch.cuda
import tqdm
from torchrl.envs.utils import ExplorationType, set_exploration_type
from torchrl.record.loggers import generate_exp_name, get_logger
from utils import (
log_metrics,
make_collector,
make_ddpg_agent,
make_environment,
make_loss_module,
make_optimizer,
make_replay_buffer,
)
@hydra.main(version_base="1.1", config_path=".", config_name="config")
def main(cfg: "DictConfig"): # noqa: F821
device = torch.device(cfg.network.device)
# Create logger
exp_name = generate_exp_name("DDPG", cfg.env.exp_name)
logger = None
if cfg.logger.backend:
logger = get_logger(
logger_type=cfg.logger.backend,
logger_name="ddpg_logging",
experiment_name=exp_name,
wandb_kwargs={"mode": cfg.logger.mode, "config": cfg},
)
# Set seeds
torch.manual_seed(cfg.env.seed)
np.random.seed(cfg.env.seed)
# Create environments
train_env, eval_env = make_environment(cfg)
# Create agent
model, exploration_policy = make_ddpg_agent(cfg, train_env, eval_env, device)
# Create DDPG loss
loss_module, target_net_updater = make_loss_module(cfg, model)
# Create off-policy collector
collector = make_collector(cfg, train_env, exploration_policy)
# Create replay buffer
replay_buffer = make_replay_buffer(
batch_size=cfg.optim.batch_size,
prb=cfg.replay_buffer.prb,
buffer_size=cfg.replay_buffer.size,
buffer_scratch_dir="/tmp/" + cfg.replay_buffer.scratch_dir,
device=device,
)
# Create optimizers
optimizer_actor, optimizer_critic = make_optimizer(cfg, loss_module)
# Main loop
start_time = time.time()
collected_frames = 0
pbar = tqdm.tqdm(total=cfg.collector.total_frames)
init_random_frames = cfg.collector.init_random_frames
num_updates = int(
cfg.collector.env_per_collector
* cfg.collector.frames_per_batch
* cfg.optim.utd_ratio
)
prb = cfg.replay_buffer.prb
frames_per_batch = cfg.collector.frames_per_batch
eval_iter = cfg.logger.eval_iter
eval_rollout_steps = cfg.env.max_episode_steps
sampling_start = time.time()
for _, tensordict in enumerate(collector):
sampling_time = time.time() - sampling_start
# Update exploration policy
exploration_policy.step(tensordict.numel())
# Update weights of the inference policy
collector.update_policy_weights_()
pbar.update(tensordict.numel())
tensordict = tensordict.reshape(-1)
current_frames = tensordict.numel()
# Add to replay buffer
replay_buffer.extend(tensordict.cpu())
collected_frames += current_frames
# Optimization steps
training_start = time.time()
if collected_frames >= init_random_frames:
(
actor_losses,
q_losses,
) = ([], [])
for _ in range(num_updates):
# Sample from replay buffer
sampled_tensordict = replay_buffer.sample().clone()
# Update critic
q_loss, *_ = loss_module.loss_value(sampled_tensordict)
optimizer_critic.zero_grad()
q_loss.backward()
optimizer_critic.step()
# Update actor
actor_loss, *_ = loss_module.loss_actor(sampled_tensordict)
optimizer_actor.zero_grad()
actor_loss.backward()
optimizer_actor.step()
q_losses.append(q_loss.item())
actor_losses.append(actor_loss.item())
# Update qnet_target params
target_net_updater.step()
# Update priority
if prb:
replay_buffer.update_priority(sampled_tensordict)
training_time = time.time() - training_start
episode_end = (
tensordict["next", "done"]
if tensordict["next", "done"].any()
else tensordict["next", "truncated"]
)
episode_rewards = tensordict["next", "episode_reward"][episode_end]
# Logging
metrics_to_log = {}
if len(episode_rewards) > 0:
episode_length = tensordict["next", "step_count"][episode_end]
metrics_to_log["train/reward"] = episode_rewards.mean().item()
metrics_to_log["train/episode_length"] = episode_length.sum().item() / len(
episode_length
)
if collected_frames >= init_random_frames:
metrics_to_log["train/q_loss"] = np.mean(q_losses)
metrics_to_log["train/a_loss"] = np.mean(actor_losses)
metrics_to_log["train/sampling_time"] = sampling_time
metrics_to_log["train/training_time"] = training_time
# Evaluation
if abs(collected_frames % eval_iter) < frames_per_batch:
with set_exploration_type(ExplorationType.MODE), torch.no_grad():
eval_start = time.time()
eval_rollout = eval_env.rollout(
eval_rollout_steps,
exploration_policy,
auto_cast_to_device=True,
break_when_any_done=True,
)
eval_time = time.time() - eval_start
eval_reward = eval_rollout["next", "reward"].sum(-2).mean().item()
metrics_to_log["eval/reward"] = eval_reward
metrics_to_log["eval/time"] = eval_time
if logger is not None:
log_metrics(logger, metrics_to_log, collected_frames)
sampling_start = time.time()
collector.shutdown()
end_time = time.time()
execution_time = end_time - start_time
print(f"Training took {execution_time:.2f} seconds to finish")
if __name__ == "__main__":
main()