-
Notifications
You must be signed in to change notification settings - Fork 428
/
test.txt
83 lines (80 loc) · 6.94 KB
/
test.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
conf-0.05
Class Images Labels P R [email protected] [email protected]:.95: 100%|██████████| 663/663 [07:22<00:00, 1.50it/s]
all 5297 123762 0.764 0.691 0.751 0.488
plane 5297 4461 0.937 0.957 0.977 0.769
baseball-diamond 5297 354 0.818 0.808 0.843 0.545
bridge 5297 790 0.717 0.534 0.615 0.303
ground-track-field 5297 212 0.719 0.627 0.677 0.481
small-vehicle 5297 73497 0.718 0.65 0.744 0.383
large-vehicle 5297 10284 0.824 0.785 0.857 0.642
ship 5297 21777 0.9 0.92 0.958 0.685
tennis-court 5297 1515 0.961 0.938 0.969 0.879
basketball-court 5297 287 0.766 0.767 0.836 0.667
storage-tank 5297 4728 0.821 0.659 0.746 0.3
soccer-ball-field 5297 241 0.61 0.598 0.613 0.414
roundabout 5297 287 0.73 0.564 0.64 0.307
harbor 5297 4179 0.863 0.831 0.871 0.531
swimming-pool 5297 994 0.762 0.69 0.742 0.364
helicopter 5297 128 0.724 0.664 0.727 0.445
container-crane 5297 28 0.349 0.0714 0.205 0.1
Speed: 0.5ms pre-process, 27.7ms inference, 10.3ms NMS per image at shape (8, 3, 1024, 1024)
conf-0.1
Class Images Labels P R [email protected] [email protected]:.95: 100%|██████████| 663/663 [07:09<00:00, 1.54it/s]
all 5297 123762 0.764 0.691 0.756 0.495
plane 5297 4461 0.937 0.957 0.975 0.77
baseball-diamond 5297 354 0.818 0.808 0.843 0.549
bridge 5297 790 0.717 0.534 0.616 0.308
ground-track-field 5297 212 0.719 0.627 0.678 0.489
small-vehicle 5297 73497 0.718 0.65 0.745 0.386
large-vehicle 5297 10284 0.824 0.785 0.857 0.646
ship 5297 21777 0.9 0.92 0.956 0.686
tennis-court 5297 1515 0.961 0.938 0.969 0.88
basketball-court 5297 287 0.766 0.767 0.839 0.672
storage-tank 5297 4728 0.821 0.659 0.746 0.304
soccer-ball-field 5297 241 0.61 0.598 0.619 0.422
roundabout 5297 287 0.73 0.564 0.636 0.31
harbor 5297 4179 0.863 0.831 0.872 0.537
swimming-pool 5297 994 0.762 0.69 0.739 0.366
helicopter 5297 128 0.724 0.664 0.736 0.454
container-crane 5297 28 0.349 0.0714 0.271 0.138
Speed: 0.5ms pre-process, 28.0ms inference, 10.2ms NMS per image at shape (8, 3, 1024, 1024)
conf-0.15
Class Images Labels P R [email protected] [email protected]:.95: 100%|██████████| 663/663 [08:07<00:00, 1.36it/s]
all 5297 123762 0.764 0.691 0.756 0.496
plane 5297 4461 0.937 0.957 0.975 0.77
baseball-diamond 5297 354 0.818 0.808 0.842 0.55
bridge 5297 790 0.717 0.534 0.615 0.312
ground-track-field 5297 212 0.719 0.627 0.68 0.495
small-vehicle 5297 73497 0.718 0.65 0.744 0.389
large-vehicle 5297 10284 0.824 0.785 0.856 0.649
ship 5297 21777 0.9 0.92 0.954 0.686
tennis-court 5297 1515 0.961 0.938 0.968 0.88
basketball-court 5297 287 0.766 0.767 0.842 0.676
storage-tank 5297 4728 0.821 0.659 0.746 0.306
soccer-ball-field 5297 241 0.61 0.598 0.621 0.426
roundabout 5297 287 0.73 0.564 0.637 0.31
harbor 5297 4179 0.863 0.831 0.871 0.54
swimming-pool 5297 994 0.762 0.69 0.736 0.367
helicopter 5297 128 0.724 0.664 0.741 0.459
container-crane 5297 28 0.349 0.0714 0.268 0.121
Speed: 0.5ms pre-process, 28.9ms inference, 10.0ms NMS per image at shape (8, 3, 1024, 1024)
conf-0.2
Class Images Labels P R [email protected] [email protected]:.95: 100%|██████████| 663/663 [06:40<00:00, 1.66it/s]
all 5297 123762 0.764 0.691 0.756 0.497
plane 5297 4461 0.937 0.957 0.974 0.77
baseball-diamond 5297 354 0.818 0.808 0.841 0.552
bridge 5297 790 0.717 0.534 0.613 0.315
ground-track-field 5297 212 0.719 0.627 0.678 0.499
small-vehicle 5297 73497 0.718 0.65 0.742 0.392
large-vehicle 5297 10284 0.824 0.785 0.855 0.651
ship 5297 21777 0.9 0.92 0.953 0.687
tennis-court 5297 1515 0.961 0.938 0.968 0.881
basketball-court 5297 287 0.766 0.767 0.843 0.678
storage-tank 5297 4728 0.821 0.659 0.743 0.306
soccer-ball-field 5297 241 0.61 0.598 0.627 0.431
roundabout 5297 287 0.73 0.564 0.635 0.311
harbor 5297 4179 0.863 0.831 0.869 0.541
swimming-pool 5297 994 0.762 0.69 0.736 0.369
helicopter 5297 128 0.724 0.664 0.747 0.465
container-crane 5297 28 0.349 0.0714 0.271 0.105
Speed: 0.5ms pre-process, 29.0ms inference, 10.1ms NMS per image at shape (8, 3, 1024, 1024)