-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_cltorch.py
98 lines (78 loc) · 2.26 KB
/
test_cltorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from __future__ import print_function
import PyClTorch
from PyTorchAug import nn
# PyClTorch.newfunction(123)
import PyTorch
from PyTorchAug import *
def myeval(expr):
print(expr, ':', eval(expr))
if __name__ == '__main__':
# a = PyTorch.foo(3,2)
# print('a', a)
# print(PyTorch.FloatTensor(3,2))
a = PyTorch.FloatTensor(4, 3).uniform()
print('a', a)
a = a.cl()
print(type(a))
print('a.dims()', a.dims())
print('a.size()', a.size())
print('a', a)
print('sum:', a.sum())
myeval('a + 1')
b = PyClTorch.ClTensor()
print('got b')
myeval('b')
b.resizeAs(a)
myeval('b')
print('run uniform')
b.uniform()
myeval('b')
print('create new b')
b = PyClTorch.ClTensor()
print('b.dims()', b.dims())
print('b.size()', b.size())
print('b', b)
c = PyTorch.FloatTensor().cl()
print('c.dims()', c.dims())
print('c.size()', c.size())
print('c', c)
print('creating Linear...')
linear = nn.Linear(3, 5)
print('created linear')
print('linear:', linear)
myeval('linear.output')
myeval('linear.output.dims()')
myeval('linear.output.size()')
myeval('linear.output.nElement()')
linear = linear.cl()
myeval('type(linear)')
myeval('type(linear.output)')
myeval('linear.output.dims()')
myeval('linear.output.size()')
myeval('linear.output')
# print('linearCl.output', linear.output)
output = linear.forward(a)
print('output.dims()', output.dims())
print('output.size()', output.size())
outputFloat = output.float()
print('outputFloat', outputFloat)
print('output', output)
mlp = nn.Sequential()
mlp.add(nn.SpatialConvolutionMM(1, 16, 5, 5, 1, 1, 2, 2))
mlp.add(nn.ReLU())
mlp.add(nn.SpatialMaxPooling(3, 3, 3, 3))
mlp.add(nn.SpatialConvolutionMM(16, 32, 5, 5, 1, 1, 2, 2))
mlp.add(nn.ReLU())
mlp.add(nn.SpatialMaxPooling(2, 2, 2, 2))
mlp.add(nn.Reshape(32 * 4 * 4))
mlp.add(nn.Linear(32 * 4 * 4, 150))
mlp.add(nn.Tanh())
mlp.add(nn.Linear(150, 10))
mlp.add(nn.LogSoftMax())
mlp.cl()
print('mlp', mlp)
myeval('mlp.output')
input = PyTorch.FloatTensor(128, 1, 28, 28).uniform().cl()
myeval('input[0]')
output = mlp.forward(input)
myeval('output[0]')