diff --git a/examples/legacy/pytorch-lightning/run_ner.py b/examples/legacy/pytorch-lightning/run_ner.py index 144759d36aac..6cbb138f023f 100644 --- a/examples/legacy/pytorch-lightning/run_ner.py +++ b/examples/legacy/pytorch-lightning/run_ner.py @@ -72,12 +72,12 @@ def prepare_data(self): self.labels, args.max_seq_length, self.tokenizer, - cls_token_at_end=bool(self.config.model_type in ["xlnet"]), + cls_token_at_end=bool(self.config.model_type == "xlnet"), cls_token=self.tokenizer.cls_token, - cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0, + cls_token_segment_id=2 if self.config.model_type == "xlnet" else 0, sep_token=self.tokenizer.sep_token, sep_token_extra=False, - pad_on_left=bool(self.config.model_type in ["xlnet"]), + pad_on_left=bool(self.config.model_type == "xlnet"), pad_token=self.tokenizer.pad_token_id, pad_token_segment_id=self.tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, diff --git a/examples/legacy/token-classification/utils_ner.py b/examples/legacy/token-classification/utils_ner.py index bfd792a250c3..b45a4fab40de 100644 --- a/examples/legacy/token-classification/utils_ner.py +++ b/examples/legacy/token-classification/utils_ner.py @@ -246,10 +246,10 @@ def __init__( labels, max_seq_length, tokenizer, - cls_token_at_end=bool(model_type in ["xlnet"]), + cls_token_at_end=bool(model_type == "xlnet"), # xlnet has a cls token at the end cls_token=tokenizer.cls_token, - cls_token_segment_id=2 if model_type in ["xlnet"] else 0, + cls_token_segment_id=2 if model_type == "xlnet" else 0, sep_token=tokenizer.sep_token, sep_token_extra=False, # roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805 diff --git a/src/transformers/audio_utils.py b/src/transformers/audio_utils.py index 231a78f38a0a..df4bbf1ca604 100644 --- a/src/transformers/audio_utils.py +++ b/src/transformers/audio_utils.py @@ -587,7 +587,7 @@ def window_function( window = np.hamming(length) elif name in ["hann", "hann_window"]: window = np.hanning(length) - elif name in ["povey"]: + elif name == "povey": window = np.power(np.hanning(length), 0.85) else: raise ValueError(f"Unknown window function '{name}'") diff --git a/src/transformers/generation/utils.py b/src/transformers/generation/utils.py index 156dca000176..97b98f96c202 100644 --- a/src/transformers/generation/utils.py +++ b/src/transformers/generation/utils.py @@ -883,7 +883,7 @@ def _prepare_decoder_input_ids_for_generation( self.config.model_type == "vision-encoder-decoder" and "donut" in self.config.encoder.model_type.lower() ): pass - elif self.config.model_type in ["whisper"]: + elif self.config.model_type == "whisper": pass # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # decoder_attention_mask if provided) diff --git a/src/transformers/integrations/ggml.py b/src/transformers/integrations/ggml.py index fd2c9c4e889a..d5600050188f 100644 --- a/src/transformers/integrations/ggml.py +++ b/src/transformers/integrations/ggml.py @@ -329,11 +329,11 @@ def _gguf_parse_value(_value, data_type): _value = int(_value[0]) elif data_type in [6, 12]: _value = float(_value[0]) - elif data_type in [7]: + elif data_type == 7: _value = bool(_value[0]) - elif data_type in [8]: + elif data_type == 8: _value = array("B", list(_value)).tobytes().decode() - elif data_type in [9]: + elif data_type == 9: _value = _gguf_parse_value(_value, array_data_type) return _value diff --git a/src/transformers/modeling_utils.py b/src/transformers/modeling_utils.py index 7dcafa323a9c..d3e0f57a01c5 100644 --- a/src/transformers/modeling_utils.py +++ b/src/transformers/modeling_utils.py @@ -4001,7 +4001,7 @@ def save_pretrained( if _is_dtensor_available and isinstance(state_dict[tensor], DTensor): full_tensor = state_dict[tensor].full_tensor() # to get the correctly ordered tensor we need to repack if packed - if _get_parameter_tp_plan(tensor, self._tp_plan) in ("local_packed_rowwise",): + if _get_parameter_tp_plan(tensor, self._tp_plan) == "local_packed_rowwise": full_tensor = repack_weights(full_tensor, -1, self._tp_size, 2) shard[tensor] = full_tensor.contiguous() # only do contiguous after it's permuted correctly else: diff --git a/src/transformers/models/altclip/configuration_altclip.py b/src/transformers/models/altclip/configuration_altclip.py index 5e8c0f2a262e..474fc48081b5 100755 --- a/src/transformers/models/altclip/configuration_altclip.py +++ b/src/transformers/models/altclip/configuration_altclip.py @@ -303,7 +303,7 @@ def __init__( # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): - if key in text_config and value != text_config[key] and key not in ["transformers_version"]: + if key in text_config and value != text_config[key] and key != "transformers_version": # If specified in `text_config_dict` if key in text_config_dict: message = ( @@ -335,7 +335,7 @@ def __init__( # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): - if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: + if key in vision_config and value != vision_config[key] and key != "transformers_version": # If specified in `vision_config_dict` if key in vision_config_dict: message = ( diff --git a/src/transformers/models/chinese_clip/configuration_chinese_clip.py b/src/transformers/models/chinese_clip/configuration_chinese_clip.py index 5b9c31965585..776df308a898 100644 --- a/src/transformers/models/chinese_clip/configuration_chinese_clip.py +++ b/src/transformers/models/chinese_clip/configuration_chinese_clip.py @@ -306,7 +306,7 @@ def __init__( # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): - if key in text_config and value != text_config[key] and key not in ["transformers_version"]: + if key in text_config and value != text_config[key] and key != "transformers_version": # If specified in `text_config_dict` if key in text_config_dict: message = ( @@ -338,7 +338,7 @@ def __init__( # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): - if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: + if key in vision_config and value != vision_config[key] and key != "transformers_version": # If specified in `vision_config_dict` if key in vision_config_dict: message = ( diff --git a/src/transformers/models/clip/configuration_clip.py b/src/transformers/models/clip/configuration_clip.py index 22c245485a0d..ae5c6bcaa8c3 100644 --- a/src/transformers/models/clip/configuration_clip.py +++ b/src/transformers/models/clip/configuration_clip.py @@ -295,7 +295,7 @@ def __init__( # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): - if key in text_config and value != text_config[key] and key not in ["transformers_version"]: + if key in text_config and value != text_config[key] and key != "transformers_version": # If specified in `text_config_dict` if key in text_config_dict: message = ( @@ -327,7 +327,7 @@ def __init__( # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): - if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: + if key in vision_config and value != vision_config[key] and key != "transformers_version": # If specified in `vision_config_dict` if key in vision_config_dict: message = ( diff --git a/src/transformers/models/clipseg/configuration_clipseg.py b/src/transformers/models/clipseg/configuration_clipseg.py index 60b14eb7efbb..e338d278577a 100644 --- a/src/transformers/models/clipseg/configuration_clipseg.py +++ b/src/transformers/models/clipseg/configuration_clipseg.py @@ -307,7 +307,7 @@ def __init__( # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): - if key in text_config and value != text_config[key] and key not in ["transformers_version"]: + if key in text_config and value != text_config[key] and key != "transformers_version": # If specified in `text_config_dict` if key in text_config_dict: message = ( @@ -339,7 +339,7 @@ def __init__( # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): - if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: + if key in vision_config and value != vision_config[key] and key != "transformers_version": # If specified in `vision_config_dict` if key in vision_config_dict: message = ( diff --git a/src/transformers/models/dpt/modeling_dpt.py b/src/transformers/models/dpt/modeling_dpt.py index d43279307aeb..4f9e7413bba6 100755 --- a/src/transformers/models/dpt/modeling_dpt.py +++ b/src/transformers/models/dpt/modeling_dpt.py @@ -864,7 +864,7 @@ def __init__(self, config: DPTConfig): self.config = config # postprocessing: only required in case of a non-hierarchical backbone (e.g. ViT, BEiT) - if config.backbone_config is not None and config.backbone_config.model_type in ["swinv2"]: + if config.backbone_config is not None and config.backbone_config.model_type == "swinv2": self.reassemble_stage = None else: self.reassemble_stage = DPTReassembleStage(config) diff --git a/src/transformers/models/flava/configuration_flava.py b/src/transformers/models/flava/configuration_flava.py index c3ecf68a8982..b7bcb920e47a 100644 --- a/src/transformers/models/flava/configuration_flava.py +++ b/src/transformers/models/flava/configuration_flava.py @@ -516,7 +516,7 @@ def __init__( # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): - if key in text_config and value != text_config[key] and key not in ["transformers_version"]: + if key in text_config and value != text_config[key] and key != "transformers_version": # If specified in `text_config_dict` if key in text_config_dict: message = ( @@ -548,7 +548,7 @@ def __init__( # Give a warning if the values exist in both `_image_config_dict` and `image_config` but being different. for key, value in _image_config_dict.items(): - if key in image_config and value != image_config[key] and key not in ["transformers_version"]: + if key in image_config and value != image_config[key] and key != "transformers_version": # If specified in `image_config_dict` if key in image_config_dict: message = ( @@ -576,11 +576,7 @@ def __init__( # Give a warning if the values exist in both `_multimodal_config_dict` and `multimodal_config` but being # different. for key, value in _multimodal_config_dict.items(): - if ( - key in multimodal_config - and value != multimodal_config[key] - and key not in ["transformers_version"] - ): + if key in multimodal_config and value != multimodal_config[key] and key != "transformers_version": # If specified in `multimodal_config_dict` if key in multimodal_config_dict: message = ( @@ -611,7 +607,7 @@ def __init__( if ( key in image_codebook_config and value != image_codebook_config[key] - and key not in ["transformers_version"] + and key != "transformers_version" ): # If specified in `image_codebook_config_dict` if key in image_codebook_config_dict: diff --git a/src/transformers/models/groupvit/configuration_groupvit.py b/src/transformers/models/groupvit/configuration_groupvit.py index cd9fb2d0469e..8366b3a08c0b 100644 --- a/src/transformers/models/groupvit/configuration_groupvit.py +++ b/src/transformers/models/groupvit/configuration_groupvit.py @@ -288,7 +288,7 @@ def __init__( # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): - if key in text_config and value != text_config[key] and key not in ["transformers_version"]: + if key in text_config and value != text_config[key] and key != "transformers_version": # If specified in `text_config_dict` if key in text_config_dict: message = ( @@ -320,7 +320,7 @@ def __init__( # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): - if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: + if key in vision_config and value != vision_config[key] and key != "transformers_version": # If specified in `vision_config_dict` if key in vision_config_dict: message = ( diff --git a/src/transformers/models/imagegpt/convert_imagegpt_original_tf2_to_pytorch.py b/src/transformers/models/imagegpt/convert_imagegpt_original_tf2_to_pytorch.py index a1bb2efee2e1..445a83c82ee8 100644 --- a/src/transformers/models/imagegpt/convert_imagegpt_original_tf2_to_pytorch.py +++ b/src/transformers/models/imagegpt/convert_imagegpt_original_tf2_to_pytorch.py @@ -60,15 +60,18 @@ def load_tf_weights_in_imagegpt(model, config, imagegpt_checkpoint_path): # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model - if any( - n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] - for n in name - ) or name[-1] in ["_step"]: + if ( + any( + n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] + for n in name + ) + or name[-1] == "_step" + ): logger.info("Skipping {}".format("/".join(name))) continue pointer = model - if name[-1] not in ["wtet"]: + if name[-1] != "wtet": pointer = getattr(pointer, "transformer") for m_name in name: diff --git a/src/transformers/models/kosmos2_5/modeling_kosmos2_5.py b/src/transformers/models/kosmos2_5/modeling_kosmos2_5.py index 4299e8ce7685..bcc4a87a62a5 100644 --- a/src/transformers/models/kosmos2_5/modeling_kosmos2_5.py +++ b/src/transformers/models/kosmos2_5/modeling_kosmos2_5.py @@ -273,9 +273,7 @@ class Kosmos2_5ModelOutput(ModelOutput): vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> tuple[Any]: - return tuple( - (self[k] if k not in ["vision_model_output"] else getattr(self, k).to_tuple()) for k in self.keys() - ) + return tuple((self[k] if k != "vision_model_output" else getattr(self, k).to_tuple()) for k in self.keys()) @dataclass @@ -333,9 +331,7 @@ class Kosmos2_5ForConditionalGenerationModelOutput(ModelOutput): vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> tuple[Any]: - return tuple( - (self[k] if k not in ["vision_model_output"] else getattr(self, k).to_tuple()) for k in self.keys() - ) + return tuple((self[k] if k != "vision_model_output" else getattr(self, k).to_tuple()) for k in self.keys()) # Copied from transformers.models.pix2struct.modeling_pix2struct.Pix2StructLayerNorm with Pix2Struct->Kosmos2_5 diff --git a/src/transformers/models/llama/convert_llama_weights_to_hf.py b/src/transformers/models/llama/convert_llama_weights_to_hf.py index 5267bfe9ba49..e63770a154de 100644 --- a/src/transformers/models/llama/convert_llama_weights_to_hf.py +++ b/src/transformers/models/llama/convert_llama_weights_to_hf.py @@ -398,7 +398,7 @@ def permute(w, n_heads, dim1=dim, dim2=dim): max_position_embeddings=max_position_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, - tie_word_embeddings=llama_version in ["3.2"], + tie_word_embeddings=llama_version == "3.2", ) config.save_pretrained(tmp_model_path) @@ -451,7 +451,7 @@ def __init__(self, vocab_file, special_tokens=None, instruct=False, llama_versio # Prevents a null chat_template, which triggers # a parsing warning in the Hub. additional_kwargs = {} - if instruct or llama_version in ["Guard-3"]: + if instruct or llama_version == "Guard-3": model_id, revision = templates_for_version.get(llama_version, (None, None)) if model_id is not None: from transformers import AutoTokenizer diff --git a/src/transformers/models/metaclip_2/configuration_metaclip_2.py b/src/transformers/models/metaclip_2/configuration_metaclip_2.py index a0cec0f3c5b3..4ad1bcde0daa 100644 --- a/src/transformers/models/metaclip_2/configuration_metaclip_2.py +++ b/src/transformers/models/metaclip_2/configuration_metaclip_2.py @@ -277,7 +277,7 @@ def __init__( # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): - if key in text_config and value != text_config[key] and key not in ["transformers_version"]: + if key in text_config and value != text_config[key] and key != "transformers_version": # If specified in `text_config_dict` if key in text_config_dict: message = ( @@ -309,7 +309,7 @@ def __init__( # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): - if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: + if key in vision_config and value != vision_config[key] and key != "transformers_version": # If specified in `vision_config_dict` if key in vision_config_dict: message = ( diff --git a/src/transformers/models/perceiver/modeling_perceiver.py b/src/transformers/models/perceiver/modeling_perceiver.py index 499d01774d06..ddab1d412c32 100755 --- a/src/transformers/models/perceiver/modeling_perceiver.py +++ b/src/transformers/models/perceiver/modeling_perceiver.py @@ -2804,7 +2804,7 @@ class PerceiverAudioPostprocessor(nn.Module): def __init__(self, config: PerceiverConfig, in_channels: int, postproc_type: str = "patches") -> None: super().__init__() - if postproc_type not in ("patches",): # to be supported: 'conv', 'patches', 'pixels' + if postproc_type != "patches": # to be supported: 'conv', 'patches', 'pixels' raise ValueError("Invalid postproc_type!") # Architecture parameters: @@ -3137,7 +3137,7 @@ def __init__( super().__init__() self.config = config - if prep_type not in ("patches",): + if prep_type != "patches": raise ValueError(f"Prep_type {prep_type} is invalid, can only be 'patches'.") if concat_or_add_pos not in ["concat", "add"]: diff --git a/src/transformers/models/phi3/configuration_phi3.py b/src/transformers/models/phi3/configuration_phi3.py index a9009e837db5..33cee6b37ba5 100644 --- a/src/transformers/models/phi3/configuration_phi3.py +++ b/src/transformers/models/phi3/configuration_phi3.py @@ -210,7 +210,7 @@ def _rope_scaling_validation(self): rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_short_factor = self.rope_scaling.get("short_factor", None) rope_scaling_long_factor = self.rope_scaling.get("long_factor", None) - if rope_scaling_type is None or rope_scaling_type not in ["longrope"]: + if rope_scaling_type is None or rope_scaling_type != "longrope": raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}") if not ( isinstance(rope_scaling_short_factor, list) diff --git a/src/transformers/models/phi4_multimodal/configuration_phi4_multimodal.py b/src/transformers/models/phi4_multimodal/configuration_phi4_multimodal.py index df9e09c481b0..e5e5ca91bfce 100644 --- a/src/transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +++ b/src/transformers/models/phi4_multimodal/configuration_phi4_multimodal.py @@ -452,7 +452,7 @@ def _rope_scaling_validation(self): rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_short_factor = self.rope_scaling.get("short_factor", None) rope_scaling_long_factor = self.rope_scaling.get("long_factor", None) - if rope_scaling_type is None or rope_scaling_type not in ["longrope"]: + if rope_scaling_type is None or rope_scaling_type != "longrope": raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}") if not ( isinstance(rope_scaling_short_factor, list) diff --git a/src/transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py b/src/transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py index 973b1624470b..a008c68d4fdc 100644 --- a/src/transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +++ b/src/transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py @@ -3848,7 +3848,7 @@ def generate( self.config.talker_config.text_config.vocab_size - 1024, self.config.talker_config.text_config.vocab_size, ) - if i not in (self.config.talker_config.codec_eos_token_id,) + if i != self.config.talker_config.codec_eos_token_id ] # Suppress additional special tokens, should not be predicted talker_kwargs = { "max_new_tokens": talker_max_new_tokens, diff --git a/src/transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py b/src/transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py index 2dc964c28f5f..a7c147b42fb2 100644 --- a/src/transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +++ b/src/transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py @@ -2425,7 +2425,7 @@ def generate( self.config.talker_config.text_config.vocab_size - 1024, self.config.talker_config.text_config.vocab_size, ) - if i not in (self.config.talker_config.codec_eos_token_id,) + if i != self.config.talker_config.codec_eos_token_id ] # Suppress additional special tokens, should not be predicted talker_kwargs = { "max_new_tokens": talker_max_new_tokens, diff --git a/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py b/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py index d9400b366e5f..d4a850cc2f4b 100644 --- a/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py +++ b/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py @@ -96,7 +96,7 @@ def load_tf_weights_in_tapas(model, config, tf_checkpoint_path): continue # in case the model is TapasForMaskedLM, we skip the pooler if isinstance(model, TapasForMaskedLM): - if any(n in ["pooler"] for n in name): + if any(n == "pooler" for n in name): logger.info(f"Skipping {'/'.join(name)}") continue # if first scope name starts with "bert", change it to "tapas" diff --git a/src/transformers/models/x_clip/configuration_x_clip.py b/src/transformers/models/x_clip/configuration_x_clip.py index 66db819168e5..3fa6bb1544a8 100644 --- a/src/transformers/models/x_clip/configuration_x_clip.py +++ b/src/transformers/models/x_clip/configuration_x_clip.py @@ -294,7 +294,7 @@ def __init__( # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): - if key in text_config and value != text_config[key] and key not in ["transformers_version"]: + if key in text_config and value != text_config[key] and key != "transformers_version": # If specified in `text_config_dict` if key in text_config_dict: message = ( @@ -326,7 +326,7 @@ def __init__( # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): - if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: + if key in vision_config and value != vision_config[key] and key != "transformers_version": # If specified in `vision_config_dict` if key in vision_config_dict: message = ( diff --git a/src/transformers/models/zoedepth/modeling_zoedepth.py b/src/transformers/models/zoedepth/modeling_zoedepth.py index f03804c2c57b..a88a444bf928 100644 --- a/src/transformers/models/zoedepth/modeling_zoedepth.py +++ b/src/transformers/models/zoedepth/modeling_zoedepth.py @@ -294,7 +294,7 @@ def __init__(self, config: ZoeDepthConfig): self.config = config # postprocessing: only required in case of a non-hierarchical backbone (e.g. ViT, BEiT) - if config.backbone_config is not None and config.backbone_config.model_type in ["swinv2"]: + if config.backbone_config is not None and config.backbone_config.model_type == "swinv2": self.reassemble_stage = None else: self.reassemble_stage = ZoeDepthReassembleStage(config) diff --git a/src/transformers/pipelines/base.py b/src/transformers/pipelines/base.py index 46ebf7172b73..9d6532508344 100644 --- a/src/transformers/pipelines/base.py +++ b/src/transformers/pipelines/base.py @@ -169,7 +169,7 @@ def inner(items): # input_values, input_pixels, input_ids, ... padded = {} for key in keys: - if key in {"input_ids"}: + if key == "input_ids": # ImageGPT uses a feature extractor if tokenizer is None and feature_extractor is not None: _padding_value = f_padding_value diff --git a/src/transformers/pipelines/text_generation.py b/src/transformers/pipelines/text_generation.py index c77ca1d4bd37..e1ea152d7a0a 100644 --- a/src/transformers/pipelines/text_generation.py +++ b/src/transformers/pipelines/text_generation.py @@ -179,7 +179,7 @@ def _sanitize_parameters( generate_kwargs["prefix_length"] = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: - if handle_long_generation not in {"hole"}: + if handle_long_generation != "hole": raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" " [None, 'hole']" @@ -234,7 +234,7 @@ def _parse_and_tokenize(self, *args, **kwargs): Parse arguments and tokenize """ # Parse arguments - if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: + if self.model.__class__.__name__ == "TransfoXLLMHeadModel": kwargs.update({"add_space_before_punct_symbol": True}) return super()._parse_and_tokenize(*args, **kwargs) diff --git a/src/transformers/testing_utils.py b/src/transformers/testing_utils.py index c480014e7ff9..58b271934868 100644 --- a/src/transformers/testing_utils.py +++ b/src/transformers/testing_utils.py @@ -2779,7 +2779,7 @@ def wrapper(*args, **kwargs): test = test.split("::")[1:] command[idx] = "::".join([f"{func.__globals__['__file__']}"] + test) command = [f"{sys.executable}", "-m", "pytest"] + command - command = [x for x in command if x not in ["--no-summary"]] + command = [x for x in command if x != "--no-summary"] # Otherwise, simply run the test with no option at all else: command = [f"{sys.executable}", "-m", "pytest", f"{test}"] @@ -4092,7 +4092,7 @@ def use_one_line_repr(obj): if element_types[0] in [int, float]: # one-line repr. without width limit return no_new_line_in_elements - elif element_types[0] in [str]: + elif element_types[0] is str: if len(obj) == 1: # one single string element --> one-line repr. without width limit return no_new_line_in_elements diff --git a/src/transformers/utils/quantization_config.py b/src/transformers/utils/quantization_config.py index 6c950bcbd298..82357e6f0fe2 100644 --- a/src/transformers/utils/quantization_config.py +++ b/src/transformers/utils/quantization_config.py @@ -1618,7 +1618,7 @@ def post_init(self): if self.hadamard_group_size not in [32, 64, 128]: raise ValueError("Only a `hadamard_group_size` of [32, 64, 128] is supported for 'mxfp4'.") elif self.forward_dtype == "nvfp4": - if self.forward_method not in ["abs_max"]: + if self.forward_method != "abs_max": raise ValueError("Only 'abs_max' is supported for forward_method for 'nvfp4'.") if self.hadamard_group_size is None: self.hadamard_group_size = 16 @@ -1627,7 +1627,7 @@ def post_init(self): else: raise ValueError("Only 'mxfp4' and 'nvfp4' are supported for forward_dtype for now.") - if self.backward_dtype not in ["bf16"]: + if self.backward_dtype != "bf16": raise ValueError("Only 'bf16' is supported for backward_dtype for now.") if self.transform_init not in ["hadamard", "identity", "gsr"]: raise ValueError("Only 'hadamard', 'identity' and 'gsr' are supported for transform_init.") @@ -2026,7 +2026,7 @@ def post_init(self): Safety checker that arguments are correct """ self.activation_scheme = self.activation_scheme.lower() - if self.activation_scheme not in ["dynamic"]: + if self.activation_scheme != "dynamic": raise ValueError(f"Activation scheme {self.activation_scheme} not supported") if len(self.weight_block_size) != 2: raise ValueError("weight_block_size must be a tuple of two integers") diff --git a/src/transformers/video_utils.py b/src/transformers/video_utils.py index 253113c1fd44..73aebbfcbf26 100644 --- a/src/transformers/video_utils.py +++ b/src/transformers/video_utils.py @@ -694,7 +694,7 @@ def sample_indices_fn_func(metadata, **fn_kwargs): # can also load with decord, but not cv2/torchvision # both will fail in case of url links video_is_url = video.startswith("http://") or video.startswith("https://") - if video_is_url and backend in ["opencv"]: + if video_is_url and backend == "opencv": raise ValueError("If you are trying to load a video from URL, you cannot use 'opencv' as backend") if ( diff --git a/tests/models/autoformer/test_modeling_autoformer.py b/tests/models/autoformer/test_modeling_autoformer.py index 6f25b1865351..c721029f0a49 100644 --- a/tests/models/autoformer/test_modeling_autoformer.py +++ b/tests/models/autoformer/test_modeling_autoformer.py @@ -287,7 +287,7 @@ def test_forward_signature(self): "future_time_features", ] - if model.__class__.__name__ in ["AutoformerForPrediction"]: + if model.__class__.__name__ == "AutoformerForPrediction": expected_arg_names.append("future_observed_mask") expected_arg_names.extend( diff --git a/tests/models/bros/test_modeling_bros.py b/tests/models/bros/test_modeling_bros.py index 8f3f5957e02e..681c1e98bdd8 100644 --- a/tests/models/bros/test_modeling_bros.py +++ b/tests/models/bros/test_modeling_bros.py @@ -323,7 +323,7 @@ def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): dtype=torch.bool, device=torch_device, ) - elif model_class.__name__ in ["BrosSpadeEEForTokenClassification"]: + elif model_class.__name__ == "BrosSpadeEEForTokenClassification": inputs_dict["initial_token_labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, diff --git a/tests/models/dab_detr/test_modeling_dab_detr.py b/tests/models/dab_detr/test_modeling_dab_detr.py index 93ee29b0d126..f9446e2eaee2 100644 --- a/tests/models/dab_detr/test_modeling_dab_detr.py +++ b/tests/models/dab_detr/test_modeling_dab_detr.py @@ -193,7 +193,7 @@ def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: - if model_class.__name__ in ["DabDetrForObjectDetection"]: + if model_class.__name__ == "DabDetrForObjectDetection": labels = [] for i in range(self.model_tester.batch_size): target = {} diff --git a/tests/models/mask2former/test_image_processing_mask2former.py b/tests/models/mask2former/test_image_processing_mask2former.py index 439a111db8f2..8ece9b9eebc7 100644 --- a/tests/models/mask2former/test_image_processing_mask2former.py +++ b/tests/models/mask2former/test_image_processing_mask2former.py @@ -549,7 +549,7 @@ def test_post_process_label_fusing(self): continue # Get number of segments to be fused - fuse_targets = [1 for el in el_unfused if el["label_id"] in {1}] + fuse_targets = [1 for el in el_unfused if el["label_id"] == 1] num_to_fuse = 0 if len(fuse_targets) == 0 else sum(fuse_targets) - 1 # Expected number of segments after fusing expected_num_segments = max([el["id"] for el in el_unfused]) - num_to_fuse diff --git a/tests/models/maskformer/test_image_processing_maskformer.py b/tests/models/maskformer/test_image_processing_maskformer.py index 44797837233c..d0f0a0875092 100644 --- a/tests/models/maskformer/test_image_processing_maskformer.py +++ b/tests/models/maskformer/test_image_processing_maskformer.py @@ -537,7 +537,7 @@ def test_post_process_label_fusing(self): continue # Get number of segments to be fused - fuse_targets = [1 for el in el_unfused if el["label_id"] in {1}] + fuse_targets = [1 for el in el_unfused if el["label_id"] == 1] num_to_fuse = 0 if len(fuse_targets) == 0 else sum(fuse_targets) - 1 # Expected number of segments after fusing expected_num_segments = max([el["id"] for el in el_unfused]) - num_to_fuse diff --git a/tests/models/maskformer/test_modeling_maskformer.py b/tests/models/maskformer/test_modeling_maskformer.py index 42e565a9e16a..aea9bc0d0ead 100644 --- a/tests/models/maskformer/test_modeling_maskformer.py +++ b/tests/models/maskformer/test_modeling_maskformer.py @@ -218,7 +218,7 @@ def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = copy.deepcopy(inputs_dict) if return_labels: - if model_class in [MaskFormerForInstanceSegmentation]: + if model_class == MaskFormerForInstanceSegmentation: inputs_dict["mask_labels"] = torch.zeros( ( self.model_tester.batch_size, diff --git a/tests/models/modernbert_decoder/test_modeling_modernbert_decoder.py b/tests/models/modernbert_decoder/test_modeling_modernbert_decoder.py index 41371a75aa76..fcfb8f28e796 100644 --- a/tests/models/modernbert_decoder/test_modeling_modernbert_decoder.py +++ b/tests/models/modernbert_decoder/test_modeling_modernbert_decoder.py @@ -63,7 +63,7 @@ def test_initialization(self): # The classifier.weight from ModernBertDecoderForSequenceClassification # is initialized without `initializer_range`, so it's not set to ~0 via the _config_zero_init if param.requires_grad and not ( - name == "classifier.weight" and model_class in [ModernBertDecoderForSequenceClassification] + name == "classifier.weight" and model_class == ModernBertDecoderForSequenceClassification ): data = torch.flatten(param.data) n_elements = torch.numel(data) diff --git a/tests/models/musicgen/test_modeling_musicgen.py b/tests/models/musicgen/test_modeling_musicgen.py index 25726fabeecd..e5b876b42604 100644 --- a/tests/models/musicgen/test_modeling_musicgen.py +++ b/tests/models/musicgen/test_modeling_musicgen.py @@ -965,7 +965,7 @@ def test_sdpa_can_dispatch_on_flash(self): self.skipTest( reason="Llava-like models currently (transformers==4.39.1) requires an attention_mask input" ) - if config.model_type in ["paligemma"]: + if config.model_type == "paligemma": self.skipTest( "PaliGemma-like models currently (transformers==4.41.0) requires an attention_mask input" ) diff --git a/tests/models/musicgen_melody/test_modeling_musicgen_melody.py b/tests/models/musicgen_melody/test_modeling_musicgen_melody.py index 8700e06388a7..4d487546c741 100644 --- a/tests/models/musicgen_melody/test_modeling_musicgen_melody.py +++ b/tests/models/musicgen_melody/test_modeling_musicgen_melody.py @@ -968,7 +968,7 @@ def test_sdpa_can_dispatch_on_flash(self): self.skipTest( reason="Llava-like models currently (transformers==4.39.1) requires an attention_mask input" ) - if config.model_type in ["paligemma"]: + if config.model_type == "paligemma": self.skipTest( "PaliGemma-like models currently (transformers==4.41.0) requires an attention_mask input" ) diff --git a/tests/models/table_transformer/test_modeling_table_transformer.py b/tests/models/table_transformer/test_modeling_table_transformer.py index a9d7d4772961..460f41495d73 100644 --- a/tests/models/table_transformer/test_modeling_table_transformer.py +++ b/tests/models/table_transformer/test_modeling_table_transformer.py @@ -213,7 +213,7 @@ def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: - if model_class.__name__ in ["TableTransformerForObjectDetection"]: + if model_class.__name__ == "TableTransformerForObjectDetection": labels = [] for i in range(self.model_tester.batch_size): target = {} diff --git a/tests/test_modeling_common.py b/tests/test_modeling_common.py index 81a93dd89c29..15d221e7a48d 100755 --- a/tests/test_modeling_common.py +++ b/tests/test_modeling_common.py @@ -2793,7 +2793,7 @@ def check_device_map_is_respected(self, model, device_map): param_device = device_map[param_name] if param_device in ["cpu", "disk"]: self.assertEqual(param.device, torch.device("meta")) - elif param_device in ["mps"]: + elif param_device == "mps": self.assertEqual(param.device, torch.device("mps")) else: # when loaded with device_map, `param_device` are integer values for cuda/xpu/hpu/npu/mlu @@ -3532,7 +3532,7 @@ def test_sdpa_can_dispatch_on_flash(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() inputs_dict = self._prepare_for_class(inputs_dict, model_class) - if config.model_type in ["paligemma"]: + if config.model_type == "paligemma": self.skipTest( "PaliGemma-like models currently (transformers==4.41.0) requires an attention_mask input" ) @@ -3560,7 +3560,7 @@ def test_sdpa_can_dispatch_on_flash(self): ) if config.model_type in ["idefics", "idefics2", "idefics3"]: self.skipTest(reason="Idefics currently (transformers==4.39.1) requires an image_attention_mask input") - if config.model_type in ["sam"]: + if config.model_type == "sam": self.skipTest(reason="SAM requires an attention_mask input for relative positional embeddings") model = model_class(config) @@ -3614,7 +3614,7 @@ def test_sdpa_can_compile_dynamic(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() inputs_dict = self._prepare_for_class(inputs_dict, model_class) - if config.model_type in ["dbrx"]: + if config.model_type == "dbrx": self.skipTest( "DBRX (transformers==4.40) requires a modification to support dynamic shapes with compile." ) diff --git a/tests/trainer/test_trainer.py b/tests/trainer/test_trainer.py index 9a80f0032e7a..3c69b1d20cb7 100644 --- a/tests/trainer/test_trainer.py +++ b/tests/trainer/test_trainer.py @@ -1764,7 +1764,7 @@ def is_any_loss_nan_or_inf(log_history): self.assertFalse(is_any_loss_nan_or_inf(log_history_filter)) def test_train_and_eval_dataloaders(self): - if torch_device in ["cuda"]: + if torch_device == "cuda": n_gpu = max(1, backend_device_count(torch_device)) else: # DP is deprecated by PyTorch, accelerators like XPU doesn't support DP diff --git a/utils/check_config_attributes.py b/utils/check_config_attributes.py index 29fa59987266..7b7c3bd4502a 100644 --- a/utils/check_config_attributes.py +++ b/utils/check_config_attributes.py @@ -435,9 +435,9 @@ def check_attribute_being_used(config_class, attributes, default_value, source_s case_allowed = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` - if attribute in ["is_encoder_decoder"] and default_value is True: + if attribute == "is_encoder_decoder" and default_value is True: case_allowed = True - elif attribute in ["tie_word_embeddings"] and default_value is False: + elif attribute == "tie_word_embeddings" and default_value is False: case_allowed = True # Allow cases without checking the default value in the configuration class diff --git a/utils/check_model_tester.py b/utils/check_model_tester.py index 60f7c0d32c3d..57fd337fb7a7 100644 --- a/utils/check_model_tester.py +++ b/utils/check_model_tester.py @@ -40,9 +40,9 @@ for k, v in config.to_dict().items(): if isinstance(v, int): target = None - if k in ["vocab_size"]: + if k == "vocab_size": target = 100 - elif k in ["max_position_embeddings"]: + elif k == "max_position_embeddings": target = 128 elif k in ["hidden_size", "d_model"]: target = 40 diff --git a/utils/tests_fetcher.py b/utils/tests_fetcher.py index 49821d703890..de0b8d52258c 100644 --- a/utils/tests_fetcher.py +++ b/utils/tests_fetcher.py @@ -409,7 +409,7 @@ def get_diff_for_doctesting(repo: Repo, base_commit: str, commits: list[str]) -> if not diff_obj.b_path.endswith(".py") and not diff_obj.b_path.endswith(".md"): continue # We always add new python/md files - if diff_obj.change_type in ["A"]: + if diff_obj.change_type == "A": code_diff.append(diff_obj.b_path) # Now for modified files elif diff_obj.change_type in ["M", "R"]: