diff --git a/docs/source/en/task_summary.mdx b/docs/source/en/task_summary.mdx index e02ad6da68e4..21e89e85b77d 100644 --- a/docs/source/en/task_summary.mdx +++ b/docs/source/en/task_summary.mdx @@ -85,11 +85,11 @@ Image classification labels an entire image from a predefined set of classes. Li ... ) >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] >>> print(*preds, sep="\n") -{'score': 0.4403, 'label': 'lynx, catamount'} -{'score': 0.0343, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'} -{'score': 0.0321, 'label': 'snow leopard, ounce, Panthera uncia'} -{'score': 0.0235, 'label': 'Egyptian cat'} -{'score': 0.023, 'label': 'tiger cat'} +{'score': 0.4335, 'label': 'lynx, catamount'} +{'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'} +{'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'} +{'score': 0.0239, 'label': 'Egyptian cat'} +{'score': 0.0229, 'label': 'tiger cat'} ``` ### Object detection @@ -131,10 +131,10 @@ Segmentation tasks are helpful in self-driving vehicles to create a pixel-level ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" ... ) >>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] ->>> preds -[{'score': 0.9856, 'label': 'LABEL_184'}, - {'score': 0.9976, 'label': 'snow'}, - {'score': 0.9962, 'label': 'cat'}] +>>> print(*preds, sep="\n") +{'score': 0.9879, 'label': 'LABEL_184'} +{'score': 0.9973, 'label': 'snow'} +{'score': 0.9972, 'label': 'cat'} ``` ### Depth estimation