Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 22 additions & 22 deletions src/transformers/utils/doc.py
Original file line number Diff line number Diff line change
Expand Up @@ -607,10 +607,10 @@ def _prepare_output_docstrings(output_type, config_class, min_indent=None):
Example:

```python
>>> from transformers import {processor_class}, {model_class}
>>> from transformers import AutoTokenizer, {model_class}
>>> import tensorflow as tf

>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
>>> model = {model_class}.from_pretrained("{checkpoint}")

>>> inputs = tokenizer(
Expand Down Expand Up @@ -640,10 +640,10 @@ def _prepare_output_docstrings(output_type, config_class, min_indent=None):
Example:

```python
>>> from transformers import {processor_class}, {model_class}
>>> from transformers import AutoTokenizer, {model_class}
>>> import tensorflow as tf

>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
>>> model = {model_class}.from_pretrained("{checkpoint}")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
Expand Down Expand Up @@ -675,10 +675,10 @@ def _prepare_output_docstrings(output_type, config_class, min_indent=None):
Example:

```python
>>> from transformers import {processor_class}, {model_class}
>>> from transformers import AutoTokenizer, {model_class}
>>> import tensorflow as tf

>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
>>> model = {model_class}.from_pretrained("{checkpoint}")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
Expand Down Expand Up @@ -706,10 +706,10 @@ def _prepare_output_docstrings(output_type, config_class, min_indent=None):
Example:

```python
>>> from transformers import {processor_class}, {model_class}
>>> from transformers import AutoTokenizer, {model_class}
>>> import tensorflow as tf

>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
>>> model = {model_class}.from_pretrained("{checkpoint}")

>>> inputs = tokenizer("The capital of France is {mask}.", return_tensors="tf")
Expand Down Expand Up @@ -739,10 +739,10 @@ def _prepare_output_docstrings(output_type, config_class, min_indent=None):
Example:

```python
>>> from transformers import {processor_class}, {model_class}
>>> from transformers import AutoTokenizer, {model_class}
>>> import tensorflow as tf

>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
>>> model = {model_class}.from_pretrained("{checkpoint}")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
Expand All @@ -756,10 +756,10 @@ def _prepare_output_docstrings(output_type, config_class, min_indent=None):
Example:

```python
>>> from transformers import {processor_class}, {model_class}
>>> from transformers import AutoTokenizer, {model_class}
>>> import tensorflow as tf

>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
>>> model = {model_class}.from_pretrained("{checkpoint}")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
Expand All @@ -779,10 +779,10 @@ def _prepare_output_docstrings(output_type, config_class, min_indent=None):
Example:

```python
>>> from transformers import {processor_class}, {model_class}
>>> from transformers import AutoTokenizer, {model_class}
>>> import tensorflow as tf

>>> tokenizer = {processor_class}.from_pretrained("{checkpoint}")
>>> tokenizer = AutoTokenizer.from_pretrained("{checkpoint}")
>>> model = {model_class}.from_pretrained("{checkpoint}")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
Expand All @@ -795,14 +795,14 @@ def _prepare_output_docstrings(output_type, config_class, min_indent=None):
Example:

```python
>>> from transformers import {processor_class}, {model_class}
>>> from transformers import AutoProcessor, {model_class}
>>> from datasets import load_dataset

>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate

>>> processor = {processor_class}.from_pretrained("{checkpoint}")
>>> processor = AutoProcessor.from_pretrained("{checkpoint}")
>>> model = {model_class}.from_pretrained("{checkpoint}")

>>> # audio file is decoded on the fly
Expand All @@ -819,15 +819,15 @@ def _prepare_output_docstrings(output_type, config_class, min_indent=None):
Example:

```python
>>> from transformers import {processor_class}, {model_class}
>>> from transformers import AutoProcessor, {model_class}
>>> from datasets import load_dataset
>>> import tensorflow as tf

>>> dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
>>> dataset = dataset.sort("id")
>>> sampling_rate = dataset.features["audio"].sampling_rate

>>> processor = {processor_class}.from_pretrained("{checkpoint}")
>>> processor = AutoProcessor.from_pretrained("{checkpoint}")
>>> model = {model_class}.from_pretrained("{checkpoint}")

>>> # audio file is decoded on the fly
Expand Down Expand Up @@ -855,13 +855,13 @@ def _prepare_output_docstrings(output_type, config_class, min_indent=None):
Example:

```python
>>> from transformers import {processor_class}, {model_class}
>>> from transformers import AutoImageProcessor, {model_class}
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = {processor_class}.from_pretrained("{checkpoint}")
>>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
>>> model = {model_class}.from_pretrained("{checkpoint}")

>>> inputs = image_processor(image, return_tensors="tf")
Expand All @@ -877,14 +877,14 @@ def _prepare_output_docstrings(output_type, config_class, min_indent=None):
Example:

```python
>>> from transformers import {processor_class}, {model_class}
>>> from transformers import AutoImageProcessor, {model_class}
>>> import tensorflow as tf
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]

>>> image_processor = {processor_class}.from_pretrained("{checkpoint}")
>>> image_processor = AutoImageProcessor.from_pretrained("{checkpoint}")
>>> model = {model_class}.from_pretrained("{checkpoint}")

>>> inputs = image_processor(image, return_tensors="tf")
Expand Down