diff --git a/src/transformers/image_utils.py b/src/transformers/image_utils.py index 437e7c568558..120d7b3c1bd2 100644 --- a/src/transformers/image_utils.py +++ b/src/transformers/image_utils.py @@ -131,7 +131,7 @@ def convert_rgb(self, image): return image.convert("RGB") - def rescale(self, image: np.ndarray, scale: Union[float, int]) -> np.ndarray: + def rescale_image(self, image: np.ndarray, scale: Union[float, int]) -> np.ndarray: """ Rescale a numpy image by scale amount """ @@ -163,7 +163,7 @@ def to_numpy_array(self, image, rescale=None, channel_first=True): rescale = isinstance(image.flat[0], np.integer) if rescale is None else rescale if rescale: - image = self.rescale(image.astype(np.float32), 1 / 255.0) + image = self.rescale_image(image.astype(np.float32), 1 / 255.0) if channel_first and image.ndim == 3: image = image.transpose(2, 0, 1) @@ -214,9 +214,9 @@ def normalize(self, image, mean, std, rescale=False): # type it may need rescaling. elif rescale: if isinstance(image, np.ndarray): - image = self.rescale(image.astype(np.float32), 1 / 255.0) + image = self.rescale_image(image.astype(np.float32), 1 / 255.0) elif is_torch_tensor(image): - image = self.rescale(image.float(), 1 / 255.0) + image = self.rescale_image(image.float(), 1 / 255.0) if isinstance(image, np.ndarray): if not isinstance(mean, np.ndarray):