Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
102 changes: 51 additions & 51 deletions tests/deepspeed/test_deepspeed.py
Original file line number Diff line number Diff line change
Expand Up @@ -752,60 +752,60 @@ def test_load_best_model(self, stage, dtype):
# must use this setting to get the reload path exercised
ds_config_dict["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = True

tokenizer = T5Tokenizer.from_pretrained(T5_TINY)
model = T5ForConditionalGeneration.from_pretrained(T5_TINY)

def _add_eos_to_examples(example):
example["input_text"] = f"question: {example['question']} context: {example['context']}"
example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else ""
return example

def _convert_to_features(example_batch):
input_encodings = tokenizer.batch_encode_plus(
example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True
)
target_encodings = tokenizer.batch_encode_plus(
example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True
)
with mockenv_context(**self.dist_env_1_gpu):

encodings = {
"input_ids": input_encodings["input_ids"],
"attention_mask": input_encodings["attention_mask"],
"labels": target_encodings["input_ids"],
tokenizer = T5Tokenizer.from_pretrained(T5_TINY)
model = T5ForConditionalGeneration.from_pretrained(T5_TINY)

def _add_eos_to_examples(example):
example["input_text"] = f"question: {example['question']} context: {example['context']}"
example["target_text"] = example["answers"]["text"][0] if len(example["answers"]["text"]) > 0 else ""
return example

def _convert_to_features(example_batch):
input_encodings = tokenizer.batch_encode_plus(
example_batch["input_text"], pad_to_max_length=True, max_length=512, truncation=True
)
target_encodings = tokenizer.batch_encode_plus(
example_batch["target_text"], pad_to_max_length=True, max_length=16, truncation=True
)

encodings = {
"input_ids": input_encodings["input_ids"],
"attention_mask": input_encodings["attention_mask"],
"labels": target_encodings["input_ids"],
}

return encodings

def get_dataset():
data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json")
data_files = dict(train=data_file, validation=data_file)
raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data")
train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True)
valid_dataset = deepcopy(train_dataset)
return train_dataset, valid_dataset

train_dataset, eval_dataset = get_dataset()

args_dict = {
"per_gpu_train_batch_size": 1,
"per_gpu_eval_batch_size": 1,
"gradient_accumulation_steps": 1,
"learning_rate": 1e-4,
"num_train_epochs": 1,
"do_train": True,
"do_eval": True,
"optim": "adafactor",
"evaluation_strategy": "steps",
"eval_steps": 1,
"save_strategy": "steps",
"save_steps": 1,
"load_best_model_at_end": True,
"max_steps": 1,
"deepspeed": ds_config_dict,
}

return encodings

def get_dataset():
data_file = str(self.tests_dir / "fixtures/tests_samples/SQUAD/sample.json")
data_files = dict(train=data_file, validation=data_file)
raw_datasets = datasets.load_dataset("json", data_files=data_files, field="data")
train_dataset = raw_datasets["train"].map(_add_eos_to_examples).map(_convert_to_features, batched=True)
valid_dataset = deepcopy(train_dataset)
return train_dataset, valid_dataset

train_dataset, eval_dataset = get_dataset()

args_dict = {
"per_gpu_train_batch_size": 1,
"per_gpu_eval_batch_size": 1,
"gradient_accumulation_steps": 1,
"learning_rate": 1e-4,
"num_train_epochs": 1,
"do_train": True,
"do_eval": True,
"optim": "adafactor",
"evaluation_strategy": "steps",
"eval_steps": 1,
"save_strategy": "steps",
"save_steps": 1,
"load_best_model_at_end": True,
"max_steps": 1,
"deepspeed": ds_config_dict,
}

with mockenv_context(**self.dist_env_1_gpu):

training_args = TrainingArguments(output_dir, **args_dict)

trainer = Trainer(
Expand Down