diff --git a/src/transformers/models/ctrl/modeling_ctrl.py b/src/transformers/models/ctrl/modeling_ctrl.py index f03046928ca4..6eac103ac8ff 100644 --- a/src/transformers/models/ctrl/modeling_ctrl.py +++ b/src/transformers/models/ctrl/modeling_ctrl.py @@ -15,7 +15,7 @@ # limitations under the License. """ PyTorch CTRL model.""" -from typing import Tuple +from typing import Optional, Tuple, Union import numpy as np import torch @@ -359,18 +359,18 @@ def _prune_heads(self, heads_to_prune): ) def forward( self, - input_ids=None, - past_key_values=None, - attention_mask=None, - token_type_ids=None, - position_ids=None, - head_mask=None, - inputs_embeds=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions use_cache = use_cache if use_cache is not None else self.config.use_cache @@ -521,19 +521,19 @@ def prepare_inputs_for_generation(self, input_ids, past=None, use_cache=None, ** ) def forward( self, - input_ids=None, - past_key_values=None, - attention_mask=None, - token_type_ids=None, - position_ids=None, - head_mask=None, - inputs_embeds=None, - labels=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: torch.LongTensor = None, + head_mask: torch.FloatTensor = None, + inputs_embeds: torch.FloatTensor = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set @@ -625,19 +625,19 @@ def __init__(self, config): ) def forward( self, - input_ids=None, - past_key_values=None, - attention_mask=None, - token_type_ids=None, - position_ids=None, - head_mask=None, - inputs_embeds=None, - labels=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - ): + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,