@@ -1540,9 +1540,7 @@ def image_guided_detection(
15401540 >>> import requests
15411541 >>> from PIL import Image
15421542 >>> import torch
1543- >>> import numpy as np
15441543 >>> from transformers import AutoProcessor, Owlv2ForObjectDetection
1545- >>> from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
15461544
15471545 >>> processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16-ensemble")
15481546 >>> model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble")
@@ -1557,20 +1555,7 @@ def image_guided_detection(
15571555 >>> with torch.no_grad():
15581556 ... outputs = model.image_guided_detection(**inputs)
15591557
1560- >>> # Note: boxes need to be visualized on the padded, unnormalized image
1561- >>> # hence we'll set the target image sizes (height, width) based on that
1562-
1563- >>> def get_preprocessed_image(pixel_values):
1564- ... pixel_values = pixel_values.squeeze().numpy()
1565- ... unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
1566- ... unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
1567- ... unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
1568- ... unnormalized_image = Image.fromarray(unnormalized_image)
1569- ... return unnormalized_image
1570-
1571- >>> unnormalized_image = get_preprocessed_image(inputs.pixel_values)
1572-
1573- >>> target_sizes = torch.Tensor([unnormalized_image.size[::-1]])
1558+ >>> target_sizes = torch.Tensor([image.size[::-1]])
15741559
15751560 >>> # Convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
15761561 >>> results = processor.post_process_image_guided_detection(
@@ -1581,19 +1566,19 @@ def image_guided_detection(
15811566 >>> for box, score in zip(boxes, scores):
15821567 ... box = [round(i, 2) for i in box.tolist()]
15831568 ... print(f"Detected similar object with confidence {round(score.item(), 3)} at location {box}")
1584- Detected similar object with confidence 0.938 at location [490.96, 109.89, 821.09, 536.11 ]
1585- Detected similar object with confidence 0.959 at location [8.67, 721.29, 928.68, 732.78 ]
1586- Detected similar object with confidence 0.902 at location [4.27, 720.02, 941.45, 761.59 ]
1587- Detected similar object with confidence 0.985 at location [265.46 , -58.9, 1009.04, 365.66 ]
1588- Detected similar object with confidence 1.0 at location [9.79, 28.69, 937.31, 941.64 ]
1589- Detected similar object with confidence 0.998 at location [869.97, 58.28, 923.23, 978.1 ]
1590- Detected similar object with confidence 0.985 at location [309.23, 21.07, 371.61, 932.02 ]
1591- Detected similar object with confidence 0.947 at location [27.93, 859.45, 969.75, 915.44 ]
1592- Detected similar object with confidence 0.996 at location [785.82, 41.38, 880.26, 966.37 ]
1593- Detected similar object with confidence 0.998 at location [5.08, 721.17, 925.93, 998.41 ]
1594- Detected similar object with confidence 0.969 at location [6.7, 898.1, 921.75, 949.51 ]
1595- Detected similar object with confidence 0.966 at location [47.16, 927.29, 981.99, 942.14 ]
1596- Detected similar object with confidence 0.924 at location [46.4, 936.13, 953.02, 950.78 ]
1569+ Detected similar object with confidence 0.938 at location [327.31, 54.94, 547.39, 268.06 ]
1570+ Detected similar object with confidence 0.959 at location [5.78, 360.65, 619.12, 366.39 ]
1571+ Detected similar object with confidence 0.902 at location [2.85, 360.01, 627.63, 380.8 ]
1572+ Detected similar object with confidence 0.985 at location [176.98 , -29.45, 672.69, 182.83 ]
1573+ Detected similar object with confidence 1.0 at location [6.53, 14.35, 624.87, 470.82 ]
1574+ Detected similar object with confidence 0.998 at location [579.98, 29.14, 615.49, 489.05 ]
1575+ Detected similar object with confidence 0.985 at location [206.15, 10.53, 247.74, 466.01 ]
1576+ Detected similar object with confidence 0.947 at location [18.62, 429.72, 646.5, 457.72 ]
1577+ Detected similar object with confidence 0.996 at location [523.88, 20.69, 586.84, 483.18 ]
1578+ Detected similar object with confidence 0.998 at location [3.39, 360.59, 617.29, 499.21 ]
1579+ Detected similar object with confidence 0.969 at location [4.47, 449.05, 614.5, 474.76 ]
1580+ Detected similar object with confidence 0.966 at location [31.44, 463.65, 654.66, 471.07 ]
1581+ Detected similar object with confidence 0.924 at location [30.93, 468.07, 635.35, 475.39 ]
15971582 ```"""
15981583 output_attentions = output_attentions if output_attentions is not None else self .config .output_attentions
15991584 output_hidden_states = (
@@ -1665,10 +1650,8 @@ def forward(
16651650 ```python
16661651 >>> import requests
16671652 >>> from PIL import Image
1668- >>> import numpy as np
16691653 >>> import torch
16701654 >>> from transformers import AutoProcessor, Owlv2ForObjectDetection
1671- >>> from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
16721655
16731656 >>> processor = AutoProcessor.from_pretrained("google/owlv2-base-patch16-ensemble")
16741657 >>> model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble")
@@ -1682,20 +1665,7 @@ def forward(
16821665 >>> with torch.no_grad():
16831666 ... outputs = model(**inputs)
16841667
1685- >>> # Note: boxes need to be visualized on the padded, unnormalized image
1686- >>> # hence we'll set the target image sizes (height, width) based on that
1687-
1688- >>> def get_preprocessed_image(pixel_values):
1689- ... pixel_values = pixel_values.squeeze().numpy()
1690- ... unnormalized_image = (pixel_values * np.array(OPENAI_CLIP_STD)[:, None, None]) + np.array(OPENAI_CLIP_MEAN)[:, None, None]
1691- ... unnormalized_image = (unnormalized_image * 255).astype(np.uint8)
1692- ... unnormalized_image = np.moveaxis(unnormalized_image, 0, -1)
1693- ... unnormalized_image = Image.fromarray(unnormalized_image)
1694- ... return unnormalized_image
1695-
1696- >>> unnormalized_image = get_preprocessed_image(inputs.pixel_values)
1697-
1698- >>> target_sizes = torch.Tensor([unnormalized_image.size[::-1]])
1668+ >>> target_sizes = torch.Tensor([image.size[::-1]])
16991669 >>> # Convert outputs (bounding boxes and class logits) to final bounding boxes and scores
17001670 >>> results = processor.post_process_object_detection(
17011671 ... outputs=outputs, threshold=0.2, target_sizes=target_sizes
@@ -1708,8 +1678,8 @@ def forward(
17081678 >>> for box, score, label in zip(boxes, scores, labels):
17091679 ... box = [round(i, 2) for i in box.tolist()]
17101680 ... print(f"Detected {text[label]} with confidence {round(score.item(), 3)} at location {box}")
1711- Detected a photo of a cat with confidence 0.614 at location [512.5, 35.08, 963.48, 557.02 ]
1712- Detected a photo of a cat with confidence 0.665 at location [10.13, 77.94, 489.93, 709.69 ]
1681+ Detected a photo of a cat with confidence 0.614 at location [341.67, 23.39, 642.32, 371.35 ]
1682+ Detected a photo of a cat with confidence 0.665 at location [6.75, 51.96, 326.62, 473.13 ]
17131683 ```"""
17141684 output_attentions = output_attentions if output_attentions is not None else self .config .output_attentions
17151685 output_hidden_states = (
0 commit comments