@@ -949,7 +949,34 @@ def test_math_extraction_edge_cases(gold, pred, expected):
949
949
r"To find the product \( ab \) where \( a = 2012_3 \) and \( b = 201_3 \), we first convert these base-three numbers to base ten. For \( a = 2012_3 \): \[ a = 2 \cdot 3^3 + 0 \cdot 3^2 + 1 \cdot 3^1 + 2 \cdot 3^0 = 2 \cdot 27 + 0 \cdot 9 + 1 \cdot 3 + 2 \cdot 1 = 54 + 0 + 3 + 2 = 59_{10} \] For \( b = 201_3 \): \[ b = 2 \cdot 3^2 + 0 \cdot 3^1 + 1 \cdot 3^0 = 2 \cdot 9 + 0 \cdot 3 + 1 \cdot 1 = 18 + 0 + 1 = 19_{10} \] Now, calculate the product in base ten: \[ ab = 59 \times 19 \] Perform the multiplication: \[ 59 \times 19 = 59 \times (20 - 1) = 59 \times 20 - 59 \times 1 = 1180 - 59 = 1121 \] Next, convert \( 1121_{10} \) to base three. We do this by dividing by 3 and recording the remainders: \[ 1121 \div 3 = 373 \quad \text{remainder } 2 \] \[ 373 \div 3 = 124 \quad \text{remainder } 1 \] \[ 124 \div 3 = 41 \quad \text{remainder } 1 \] \[ 41 \div 3 = 13 \quad \text{remainder } 2 \] \[ 13 \div 3 = 4 \quad \text{remainder } 1 \] \[ 4 \div 3 = 1 \quad \text{remainder } 1 \] \[ 1 \div 3 = 0 \quad \text{remainder } 1 \] Reading the remainders from last to first, we find: \[ 1121_{10} = 1112122_3 \] Thus, the product \( ab \) expressed in the base-three number system is \(\boxed{1112122_3}\)." ,
950
950
0 ,
951
951
),
952
+ (
953
+ r"\(\boxed{\text{C}}\)." ,
954
+ r"$\boxed{\text{(C)}}.$" ,
955
+ 1 ,
956
+ ),
957
+ (
958
+ r" So the answer is: \[ \boxed{11111111100} \]" ,
959
+ r"is $\boxed{11,\! 111,\! 111,\! 100}$" ,
960
+ 1 ,
961
+ ),
962
+ (
963
+ r" So the answer is: \[ \boxed{32349} \]" ,
964
+ r"is $\boxed{32,\! 349}$" ,
965
+ 1 ,
966
+ ),
967
+ (
968
+ r"Thus, the domain of the function \( f(x) \) is: \[ \boxed{(2, 12) \cup (12, 102)} \]" ,
969
+ r"Thus, the answer is $x \in \boxed{(2,12) \cup (12,102)}$" ,
970
+ 1 ,
971
+ ),
952
972
],
953
973
)
954
974
def test_math_extraction_additional_cases (gold , pred , expected ):
955
975
assert compare_strings (gold , pred , match_types = ["latex" , "expr" ]) == expected
976
+
977
+
978
+ # text{C} Qwen correct
979
+ # 11111111100 Qwen correct
980
+ # Interval(2, oo) qwen incorrect
981
+ # text{west} qwen incorrect
982
+ # 32349, 32,\!348 qwen incorrect
0 commit comments