|
| 1 | +import shutil |
| 2 | +from pathlib import Path |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import torch |
| 6 | + |
| 7 | +from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME, LeRobotDataset |
| 8 | +from lerobot.common.datasets.push_dataset_to_hub._download_raw import download_raw |
| 9 | + |
| 10 | + |
| 11 | +def create_empty_dataset(repo_id, mode): |
| 12 | + features = {} |
| 13 | + |
| 14 | + if mode == "keypoints": |
| 15 | + state_dim = 16 |
| 16 | + else: |
| 17 | + state_dim = 2 |
| 18 | + features["observation.image"] = { |
| 19 | + "dtype": mode, |
| 20 | + "shape": (3, 96, 96), |
| 21 | + "names": [ |
| 22 | + "channel", |
| 23 | + "height", |
| 24 | + "width", |
| 25 | + ], |
| 26 | + } |
| 27 | + |
| 28 | + features.update( |
| 29 | + { |
| 30 | + "observation.state": { |
| 31 | + "dtype": "float32", |
| 32 | + "shape": (state_dim,), |
| 33 | + "names": [ |
| 34 | + ["x", "y"], |
| 35 | + ], |
| 36 | + }, |
| 37 | + "action": { |
| 38 | + "dtype": "float32", |
| 39 | + "shape": (2,), |
| 40 | + "names": [ |
| 41 | + ["x", "y"], |
| 42 | + ], |
| 43 | + }, |
| 44 | + "next.reward": { |
| 45 | + "dtype": "float32", |
| 46 | + "shape": (1,), |
| 47 | + "names": None, |
| 48 | + }, |
| 49 | + "next.success": { |
| 50 | + "dtype": "bool", |
| 51 | + "shape": (1,), |
| 52 | + "names": None, |
| 53 | + }, |
| 54 | + } |
| 55 | + ) |
| 56 | + |
| 57 | + dataset = LeRobotDataset.create( |
| 58 | + repo_id=repo_id, |
| 59 | + fps=10, |
| 60 | + robot_type="2d pointer", |
| 61 | + features=features, |
| 62 | + ) |
| 63 | + return dataset |
| 64 | + |
| 65 | + |
| 66 | +def load_raw_dataset(zarr_path, load_images=True): |
| 67 | + try: |
| 68 | + from lerobot.common.datasets.push_dataset_to_hub._diffusion_policy_replay_buffer import ( |
| 69 | + ReplayBuffer as DiffusionPolicyReplayBuffer, |
| 70 | + ) |
| 71 | + except ModuleNotFoundError as e: |
| 72 | + print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`") |
| 73 | + raise e |
| 74 | + |
| 75 | + zarr_data = DiffusionPolicyReplayBuffer.copy_from_path(zarr_path) |
| 76 | + |
| 77 | + env_state = zarr_data["state"][:] |
| 78 | + agent_pos = env_state[:, :2] |
| 79 | + block_pos = env_state[:, 2:4] |
| 80 | + block_angle = env_state[:, 4] |
| 81 | + |
| 82 | + action = zarr_data["action"][:] |
| 83 | + |
| 84 | + image = None |
| 85 | + if load_images: |
| 86 | + # b h w c |
| 87 | + image = zarr_data["img"] |
| 88 | + |
| 89 | + episode_data_index = { |
| 90 | + "from": np.array([0] + zarr_data.meta["episode_ends"][:-1].tolist()), |
| 91 | + "to": zarr_data.meta["episode_ends"], |
| 92 | + } |
| 93 | + |
| 94 | + return image, agent_pos, block_pos, block_angle, action, episode_data_index |
| 95 | + |
| 96 | + |
| 97 | +def calculate_coverage(block_pos, block_angle): |
| 98 | + try: |
| 99 | + import pymunk |
| 100 | + from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely |
| 101 | + except ModuleNotFoundError as e: |
| 102 | + print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`") |
| 103 | + raise e |
| 104 | + |
| 105 | + num_frames = len(block_pos) |
| 106 | + |
| 107 | + coverage = np.zeros((num_frames,)) |
| 108 | + # 8 keypoints with 2 coords each |
| 109 | + keypoints = np.zeros((num_frames, 16)) |
| 110 | + |
| 111 | + # Set x, y, theta (in radians) |
| 112 | + goal_pos_angle = np.array([256, 256, np.pi / 4]) |
| 113 | + goal_body = PushTEnv.get_goal_pose_body(goal_pos_angle) |
| 114 | + |
| 115 | + for i in range(num_frames): |
| 116 | + space = pymunk.Space() |
| 117 | + space.gravity = 0, 0 |
| 118 | + space.damping = 0 |
| 119 | + |
| 120 | + # Add walls. |
| 121 | + walls = [ |
| 122 | + PushTEnv.add_segment(space, (5, 506), (5, 5), 2), |
| 123 | + PushTEnv.add_segment(space, (5, 5), (506, 5), 2), |
| 124 | + PushTEnv.add_segment(space, (506, 5), (506, 506), 2), |
| 125 | + PushTEnv.add_segment(space, (5, 506), (506, 506), 2), |
| 126 | + ] |
| 127 | + space.add(*walls) |
| 128 | + |
| 129 | + block_body, block_shapes = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item()) |
| 130 | + goal_geom = pymunk_to_shapely(goal_body, block_body.shapes) |
| 131 | + block_geom = pymunk_to_shapely(block_body, block_body.shapes) |
| 132 | + intersection_area = goal_geom.intersection(block_geom).area |
| 133 | + goal_area = goal_geom.area |
| 134 | + coverage[i] = intersection_area / goal_area |
| 135 | + keypoints[i] = torch.from_numpy(PushTEnv.get_keypoints(block_shapes).flatten()) |
| 136 | + |
| 137 | + return coverage, keypoints |
| 138 | + |
| 139 | + |
| 140 | +def calculate_success(coverage, success_threshold): |
| 141 | + return coverage > success_threshold |
| 142 | + |
| 143 | + |
| 144 | +def calculate_reward(coverage, success_threshold): |
| 145 | + return np.clip(coverage / success_threshold, 0, 1) |
| 146 | + |
| 147 | + |
| 148 | +def populate_dataset(dataset, episode_data_index, episodes, image, state, action, reward, success): |
| 149 | + if episodes is None: |
| 150 | + episodes = range(len(episode_data_index["from"])) |
| 151 | + |
| 152 | + for ep_idx in episodes: |
| 153 | + from_idx = episode_data_index["from"][ep_idx] |
| 154 | + to_idx = episode_data_index["to"][ep_idx] |
| 155 | + num_frames = to_idx - from_idx |
| 156 | + |
| 157 | + for frame_idx in range(num_frames): |
| 158 | + i = from_idx + frame_idx |
| 159 | + |
| 160 | + frame = { |
| 161 | + "action": torch.from_numpy(action[i]), |
| 162 | + "timestamp": frame_idx / dataset.fps, |
| 163 | + # Shift reward and success by +1 until the last item of the episode |
| 164 | + "next.reward": reward[i + (frame_idx < num_frames - 1)], |
| 165 | + "next.success": success[i + (frame_idx < num_frames - 1)], |
| 166 | + } |
| 167 | + |
| 168 | + frame["observation.state"] = torch.from_numpy(state[i]) |
| 169 | + if image is not None: |
| 170 | + frame["observation.image"] = torch.from_numpy(image[i]) |
| 171 | + |
| 172 | + # TODO(rcadene): add_frame_to_buffer, add_episode_from_buffer |
| 173 | + dataset.add_frame(frame) |
| 174 | + |
| 175 | + dataset.add_episode(task="Push the T-shaped blue block onto the T-shaped green target surface.") |
| 176 | + |
| 177 | + return dataset |
| 178 | + |
| 179 | + |
| 180 | +def port_pusht(raw_dir, repo_id, episodes=None, mode="video", push_to_hub=True): |
| 181 | + if mode not in ["video", "image", "keypoints"]: |
| 182 | + raise ValueError(mode) |
| 183 | + |
| 184 | + if (LEROBOT_HOME / repo_id).exists(): |
| 185 | + shutil.rmtree(LEROBOT_HOME / repo_id) |
| 186 | + |
| 187 | + raw_dir = Path(raw_dir) |
| 188 | + if not raw_dir.exists(): |
| 189 | + download_raw(raw_dir, repo_id="lerobot-raw/pusht_raw") |
| 190 | + |
| 191 | + image, agent_pos, block_pos, block_angle, action, episode_data_index = load_raw_dataset( |
| 192 | + zarr_path=raw_dir / "pusht_cchi_v7_replay.zarr" |
| 193 | + ) |
| 194 | + |
| 195 | + # Calculate success and reward based on the overlapping area |
| 196 | + # of the T-object and the T-area. |
| 197 | + coverage, keypoints = calculate_coverage(block_pos, block_angle) |
| 198 | + success = calculate_success(coverage, success_threshold=0.95) |
| 199 | + reward = calculate_reward(coverage, success_threshold=0.95) |
| 200 | + |
| 201 | + dataset = create_empty_dataset(repo_id, mode) |
| 202 | + dataset = populate_dataset( |
| 203 | + dataset, |
| 204 | + episode_data_index, |
| 205 | + episodes, |
| 206 | + image=None if mode == "keypoints" else image, |
| 207 | + state=keypoints if mode == "keypoints" else agent_pos, |
| 208 | + action=action, |
| 209 | + reward=reward, |
| 210 | + success=success, |
| 211 | + ) |
| 212 | + dataset.consolidate() |
| 213 | + |
| 214 | + if push_to_hub: |
| 215 | + dataset.push_to_hub() |
| 216 | + |
| 217 | + |
| 218 | +if __name__ == "__main__": |
| 219 | + episodes = [0, 1] |
| 220 | + # episodes = None |
| 221 | + |
| 222 | + # for mode in ["video"]: |
| 223 | + for mode in ["image"]: |
| 224 | + # for mode in ["keypoints"]: |
| 225 | + # for mode in ["video", "image", "keypoints"]: |
| 226 | + repo_id = "cadene/pusht_v2" |
| 227 | + if mode in ["image", "keypoints"]: |
| 228 | + repo_id += f"_{mode}" |
| 229 | + port_pusht("data/lerobot-raw/pusht_raw", repo_id=repo_id, mode=mode, episodes=episodes) |
| 230 | + |
| 231 | + # dataset = LeRobotDataset(repo_id="cadene/pusht_v2", local_files_only=True) |
| 232 | + # dataset_old = LeRobotDataset(repo_id="lerobot/pusht") |
0 commit comments