Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 23 additions & 13 deletions src/diffusers/image_processor.py
Original file line number Diff line number Diff line change
Expand Up @@ -236,7 +236,7 @@ def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, to
`np.ndarray` or `torch.Tensor`:
The denormalized image array.
"""
return (images / 2 + 0.5).clamp(0, 1)
return (images * 0.5 + 0.5).clamp(0, 1)

@staticmethod
def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
Expand Down Expand Up @@ -537,6 +537,26 @@ def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:

return image

def _denormalize_conditionally(
self, images: torch.Tensor, do_denormalize: Optional[List[bool]] = None
) -> torch.Tensor:
r"""
Denormalize a batch of images based on a condition list.

Args:
images (`torch.Tensor`):
The input image tensor.
do_denormalize (`Optional[List[bool]`, *optional*, defaults to `None`):
A list of booleans indicating whether to denormalize each image in the batch. If `None`, will use the
value of `do_normalize` in the `VaeImageProcessor` config.
"""
if do_denormalize is None:
return self.denormalize(images) if self.config.do_normalize else images

return torch.stack(
[self.denormalize(images[i]) if do_denormalize[i] else images[i] for i in range(images.shape[0])]
)

def get_default_height_width(
self,
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
Expand Down Expand Up @@ -752,12 +772,7 @@ def postprocess(
if output_type == "latent":
return image

if do_denormalize is None:
do_denormalize = [self.config.do_normalize] * image.shape[0]

image = torch.stack(
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
)
image = self._denormalize_conditionally(image, do_denormalize)

if output_type == "pt":
return image
Expand Down Expand Up @@ -966,12 +981,7 @@ def postprocess(
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
output_type = "np"

if do_denormalize is None:
do_denormalize = [self.config.do_normalize] * image.shape[0]

image = torch.stack(
[self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
)
image = self._denormalize_conditionally(image, do_denormalize)

image = self.pt_to_numpy(image)

Expand Down
Loading