You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The examples in this link cannot be executed without encountering bugs.
for LEditsPPPipelineStableDiffusion:
Loading pipeline components...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 6.69it/s]
This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. The scheduler has been changed to DPMSolverMultistepScheduler.
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:02<00:00, 18.51it/s]
/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/torch/functional.py:534: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3595.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
0%| | 0/50 [00:00<?, ?it/s]
Traceback (most recent call last):
File "/data/zhiyuan/prjs/unrealistic-images/diffusion/examples/leditspp.py", line 22, in
edited_image = pipe(
File "/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py", line 1022, in call
out = self.attention_store.aggregate_attention(
File "/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py", line 128, in aggregate_attention
out = torch.stack([torch.cat(x, dim=0) for x in out])
File "/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py", line 128, in
out = torch.stack([torch.cat(x, dim=0) for x in out])
RuntimeError: torch.cat(): expected a non-empty list of Tensors
for LEditsPPPipelineStableDiffusionXL
Loading pipeline components...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 4.55it/s]
This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. The scheduler has been changed to DPMSolverMultistepScheduler.
Your input images far exceed the default resolution of the underlying diffusion model. The output images may contain severe artifacts! Consider down-sampling the input using the height and width parameters
File "/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/torch/nn/modules/conv.py", line 549, in _conv_forward
return F.conv2d(
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 136.51 GiB. GPU 0 has a total capacity of 95.10 GiB of which 41.99 GiB is free. Including non-PyTorch memory, this process has 53.10 GiB memory in use. Of the allocated memory 48.46 GiB is allocated by PyTorch, and 4.20 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
Describe the bug
https://huggingface.co/docs/diffusers/en/api/pipelines/ledits_pp
The examples in this link cannot be executed without encountering bugs.
for LEditsPPPipelineStableDiffusion:
Loading pipeline components...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 6.69it/s]
This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. The scheduler has been changed to DPMSolverMultistepScheduler.
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:02<00:00, 18.51it/s]
/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/torch/functional.py:534: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3595.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
0%| | 0/50 [00:00<?, ?it/s]
Traceback (most recent call last):
File "/data/zhiyuan/prjs/unrealistic-images/diffusion/examples/leditspp.py", line 22, in
edited_image = pipe(
File "/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py", line 1022, in call
out = self.attention_store.aggregate_attention(
File "/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py", line 128, in aggregate_attention
out = torch.stack([torch.cat(x, dim=0) for x in out])
File "/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py", line 128, in
out = torch.stack([torch.cat(x, dim=0) for x in out])
RuntimeError: torch.cat(): expected a non-empty list of Tensors
for LEditsPPPipelineStableDiffusionXL
Loading pipeline components...: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:01<00:00, 4.55it/s]
This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. The scheduler has been changed to DPMSolverMultistepScheduler.
Your input images far exceed the default resolution of the underlying diffusion model. The output images may contain severe artifacts! Consider down-sampling the input using the
height
andwidth
parametersFile "/home/zhiyuan/anaconda3/envs/diffusers/lib/python3.10/site-packages/torch/nn/modules/conv.py", line 549, in _conv_forward
return F.conv2d(
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 136.51 GiB. GPU 0 has a total capacity of 95.10 GiB of which 41.99 GiB is free. Including non-PyTorch memory, this process has 53.10 GiB memory in use. Of the allocated memory 48.46 GiB is allocated by PyTorch, and 4.20 GiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
Reproduction
python
python
Logs
No response
System Info
NVIDIA H20, 97871 MiB
NVIDIA H20, 97871 MiB
NVIDIA H20, 97871 MiB
NVIDIA H20, 97871 MiB
NVIDIA H20, 97871 MiB
NVIDIA H20, 97871 MiB
NVIDIA H20, 97871 MiB
Who can help?
@yiyixuxu @asomoza @sayakpaul @stevhliu
The text was updated successfully, but these errors were encountered: