Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add impatience for unblocking traffic. #1913

Merged
merged 1 commit into from
Mar 22, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 21 additions & 4 deletions smarts/core/local_traffic_provider.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,8 @@
from .utils.math import min_angles_difference_signed, radians_to_vec, vec_to_radians
from .vehicle import VEHICLE_CONFIGS, VehicleState

MAX_IMPATIENCE = 3.0


def _safe_division(n: float, d: float, default=math.inf):
"""This method uses a short circuit form where `and` converts right side to true|false (as 1|0) in which cases are:
Expand Down Expand Up @@ -522,6 +524,8 @@ def __init__(self, flow: Dict[str, Any], owner: LocalTrafficProvider):
self._wait_to_restart = float(self._vtype.get("jmWaitToRestart", 0.0))
self._stopped_at_feat = dict()
self._waiting_at_feat = defaultdict(float)
self._time_to_impatience = 3
self._current_impatience = 0

self._max_angular_velocity = 26 # arbitrary, based on limited testing
self._prev_angular_err = None
Expand All @@ -531,6 +535,10 @@ def __init__(self, flow: Dict[str, Any], owner: LocalTrafficProvider):

owner._actors_created += 1

@property
def _impatience(self):
return min(1, max(0, self._current_impatience))

@classmethod
def from_flow(cls, flow: Dict[str, Any], owner: LocalTrafficProvider):
"""Factory to construct a _TrafficActor object from a flow dictionary."""
Expand Down Expand Up @@ -1751,7 +1759,8 @@ def _compute_acceleration(self, dt: float) -> float:
),
1e-13,
)
min_time_cush = float(self._vtype.get("tau", 1.0))
tau = float(self._vtype.get("tau", 1.0))
min_time_cush = tau - tau * self._impatience
if (
not self._near_dest(min_time_cush * speed_denom)
and time_cush < min_time_cush
Expand All @@ -1764,7 +1773,7 @@ def _compute_acceleration(self, dt: float) -> float:
return 0

space_cush = max(min(self._target_lane_win.gap, self._lane_win.gap), 1e-13)
if space_cush < self._min_space_cush:
if space_cush < self._min_space_cush - self._min_space_cush * self._impatience:
if self.speed > 0:
severity = 4 * _safe_division(
(self._min_space_cush - space_cush), self._min_space_cush
Expand All @@ -1776,11 +1785,11 @@ def _compute_acceleration(self, dt: float) -> float:

# magic numbers / weights here were just what looked reasonable in limited testing
P = 0.0060 * (self._target_speed - my_speed)
I = -0.0150 / space_cush + -0.0333 / time_cush
I = (-0.0150 / space_cush + -0.0333 / time_cush) * (1 - self._impatience)
D = -0.0010 * my_acc
PID = (P + I + D) / dt

PID -= 0.02 * self._imperfection * random.random()
PID += 0.02 * self._imperfection * (random.random() - 0.5)

PID = np.clip(PID, -1.0, 1.0)

Expand All @@ -1792,6 +1801,14 @@ def _compute_acceleration(self, dt: float) -> float:
def compute_next_state(self, dt: float):
"""Pre-computes the next state for this traffic actor."""
self._compute_lane_speeds()
if math.isclose(self.speed, 0, abs_tol=1.5):
self._current_impatience = min(
MAX_IMPATIENCE, self._current_impatience + dt / self._time_to_impatience
)
else:
self._current_impatience = max(
0, self._current_impatience - dt / self._time_to_impatience
)

self._pick_lane(dt)
self._check_speed(dt)
Expand Down