forked from pytorch/audio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
85 lines (71 loc) · 2.43 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import logging
import pathlib
from argparse import ArgumentParser
import sentencepiece as spm
from alignment.tokenizer import (
EnglishCharTokenizer,
EnglishBPETokenizer,
EnglishPhonemeTokenizer,
)
import torch
import torchaudio
from lightning import AcousticModelModule
from transforms import get_data_module
logger = logging.getLogger()
def compute_word_level_distance(seq1, seq2):
return torchaudio.functional.edit_distance(seq1.lower().split(), seq2.lower().split())
def run_eval(args):
tokenizer = EnglishPhonemeTokenizer()
model = AcousticModelModule.load_from_checkpoint(args.checkpoint_path, tokenizer=tokenizer).eval()
data_module = get_data_module(str(args.librispeech_path), str(args.global_stats_path), tokenizer)
if args.use_cuda:
model = model.to(device="cuda")
total_edit_distance = 0
total_length = 0
dataloader = data_module.test_dataloader()
with torch.no_grad():
for idx, (batch, sample) in enumerate(dataloader):
actual = sample[0][2]
actual_tokenized = "".join(tokenizer.encode_flatten(actual, out_type=str))
predicted = model.decode(batch)[0]
total_edit_distance += compute_word_level_distance(actual_tokenized, predicted)
total_length += len(actual.split())
if idx % 100 == 0:
logger.warning(f"Processed elem {idx}; CER: {total_edit_distance / total_length}")
logger.warning(f"Final CER: {total_edit_distance / total_length}")
def cli_main():
parser = ArgumentParser()
parser.add_argument(
"--checkpoint-path",
type=pathlib.Path,
help="Path to checkpoint to use for evaluation.",
required=True,
)
parser.add_argument(
"--global-stats-path",
default=pathlib.Path("global_stats.json"),
type=pathlib.Path,
help="Path to JSON file containing feature means and stddevs.",
)
parser.add_argument(
"--librispeech-path",
type=pathlib.Path,
help="Path to LibriSpeech datasets.",
required=True,
)
parser.add_argument(
"--sp-model-path",
type=pathlib.Path,
help="Path to SentencePiece model.",
required=False,
)
parser.add_argument(
"--use-cuda",
action="store_true",
default=False,
help="Run using CUDA.",
)
args = parser.parse_args()
run_eval(args)
if __name__ == "__main__":
cli_main()