-
Notifications
You must be signed in to change notification settings - Fork 39
/
spin.py
360 lines (294 loc) · 12.5 KB
/
spin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# This script is borrowed and extended from https://github.com/nkolot/SPIN/blob/master/models/hmr.py
# Adhere to their licence to use this script
import math
import torch
import numpy as np
import os.path as osp
import torch.nn as nn
import torchvision.models.resnet as resnet
from lib.core.config import BASE_DATA_DIR
from lib.utils.geometry import rotation_matrix_to_angle_axis, rot6d_to_rotmat
from lib.models.smpl import SMPL, SMPL_MODEL_DIR, H36M_TO_J14, SMPL_MEAN_PARAMS
class Bottleneck(nn.Module):
"""
Redefinition of Bottleneck residual block
Adapted from the official PyTorch implementation
"""
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class HMR(nn.Module):
"""
SMPL Iterative Regressor with ResNet50 backbone
"""
def __init__(self, block, layers, smpl_mean_params):
self.inplanes = 64
super(HMR, self).__init__()
npose = 24 * 6
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc1 = nn.Linear(512 * block.expansion + npose + 13, 1024)
self.drop1 = nn.Dropout()
self.fc2 = nn.Linear(1024, 1024)
self.drop2 = nn.Dropout()
self.decpose = nn.Linear(1024, npose)
self.decshape = nn.Linear(1024, 10)
self.deccam = nn.Linear(1024, 3)
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)
self.smpl = SMPL(
SMPL_MODEL_DIR,
batch_size=64,
create_transl=False
).to('cpu')
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
mean_params = np.load(smpl_mean_params)
init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0)
init_shape = torch.from_numpy(mean_params['shape'][:].astype('float32')).unsqueeze(0)
init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0)
self.register_buffer('init_pose', init_pose)
self.register_buffer('init_shape', init_shape)
self.register_buffer('init_cam', init_cam)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def feature_extractor(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x1 = self.layer1(x)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
xf = self.avgpool(x4)
xf = xf.view(xf.size(0), -1)
return xf
def forward(self, x, init_pose=None, init_shape=None, init_cam=None, n_iter=3, return_features=False):
batch_size = x.shape[0]
if init_pose is None:
init_pose = self.init_pose.expand(batch_size, -1)
if init_shape is None:
init_shape = self.init_shape.expand(batch_size, -1)
if init_cam is None:
init_cam = self.init_cam.expand(batch_size, -1)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x1 = self.layer1(x)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
xf = self.avgpool(x4)
xf = xf.view(xf.size(0), -1)
pred_pose = init_pose
pred_shape = init_shape
pred_cam = init_cam
for i in range(n_iter):
xc = torch.cat([xf, pred_pose, pred_shape, pred_cam], 1)
xc = self.fc1(xc)
xc = self.drop1(xc)
xc = self.fc2(xc)
xc = self.drop2(xc)
pred_pose = self.decpose(xc) + pred_pose
pred_shape = self.decshape(xc) + pred_shape
pred_cam = self.deccam(xc) + pred_cam
pred_rotmat = rot6d_to_rotmat(pred_pose).view(batch_size, 24, 3, 3)
pred_output = self.smpl(
betas=pred_shape,
body_pose=pred_rotmat[:, 1:],
global_orient=pred_rotmat[:, 0].unsqueeze(1),
pose2rot=False
)
pred_vertices = pred_output.vertices
pred_joints = pred_output.joints
pred_keypoints_2d = projection(pred_joints, pred_cam)
pose = rotation_matrix_to_angle_axis(pred_rotmat.reshape(-1, 3, 3)).reshape(-1, 72)
output = [{
'theta': torch.cat([pred_cam, pose, pred_shape], dim=1),
'verts': pred_vertices,
'kp_2d': pred_keypoints_2d,
'kp_3d': pred_joints,
}]
if return_features:
return xf, output
else:
return output
class Regressor(nn.Module):
def __init__(self, smpl_mean_params=SMPL_MEAN_PARAMS):
super(Regressor, self).__init__()
npose = 24 * 6
self.fc1 = nn.Linear(512 * 4 + npose + 13, 1024)
self.drop1 = nn.Dropout()
self.fc2 = nn.Linear(1024, 1024)
self.drop2 = nn.Dropout()
self.decpose = nn.Linear(1024, npose)
self.decshape = nn.Linear(1024, 10)
self.deccam = nn.Linear(1024, 3)
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)
self.smpl = SMPL(
SMPL_MODEL_DIR,
batch_size=64,
create_transl=False,
)
mean_params = np.load(smpl_mean_params)
init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0)
init_shape = torch.from_numpy(mean_params['shape'][:].astype('float32')).unsqueeze(0)
init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0)
self.register_buffer('init_pose', init_pose)
self.register_buffer('init_shape', init_shape)
self.register_buffer('init_cam', init_cam)
def forward(self, x, init_pose=None, init_shape=None, init_cam=None, n_iter=3, is_train=False, J_regressor=None):
batch_size = x.shape[0]
if init_pose is None:
init_pose = self.init_pose.expand(batch_size, -1)
if init_shape is None:
init_shape = self.init_shape.expand(batch_size, -1)
if init_cam is None:
init_cam = self.init_cam.expand(batch_size, -1)
pred_pose = init_pose
pred_shape = init_shape
pred_cam = init_cam
for i in range(n_iter):
xc = torch.cat([x, pred_pose, pred_shape, pred_cam], 1)
xc = self.fc1(xc)
xc = self.drop1(xc)
xc = self.fc2(xc)
xc = self.drop2(xc)
pred_pose = self.decpose(xc) + pred_pose
pred_shape = self.decshape(xc) + pred_shape
pred_cam = self.deccam(xc) + pred_cam
pred_rotmat = rot6d_to_rotmat(pred_pose).view(batch_size, 24, 3, 3)
pred_output = self.smpl(
betas=pred_shape,
body_pose=pred_rotmat[:, 1:],
global_orient=pred_rotmat[:, 0].unsqueeze(1),
pose2rot=False,
)
pred_vertices = pred_output.vertices
pred_joints = pred_output.joints
if not is_train and J_regressor is not None:
J_regressor_batch = J_regressor[None, :].expand(pred_vertices.shape[0], -1, -1).to(pred_vertices.device)
pred_joints = torch.matmul(J_regressor_batch, pred_vertices)
pred_joints = pred_joints[:, H36M_TO_J14, :]
pred_keypoints_2d = projection(pred_joints, pred_cam)
pose = rotation_matrix_to_angle_axis(pred_rotmat.reshape(-1, 3, 3)).reshape(-1, 72)
output = [{
'theta' : torch.cat([pred_cam, pose, pred_shape], dim=1),
'verts' : pred_vertices,
'kp_2d' : pred_keypoints_2d,
'kp_3d' : pred_joints,
'rotmat' : pred_rotmat
}]
return output
def hmr(smpl_mean_params=SMPL_MEAN_PARAMS, pretrained=True, **kwargs):
"""
Constructs an HMR model with ResNet50 backbone.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = HMR(Bottleneck, [3, 4, 6, 3], smpl_mean_params, **kwargs)
if pretrained:
resnet_imagenet = resnet.resnet50(pretrained=True)
model.load_state_dict(resnet_imagenet.state_dict(), strict=False)
return model
def projection(pred_joints, pred_camera):
pred_cam_t = torch.stack([pred_camera[:, 1],
pred_camera[:, 2],
2 * 5000. / (224. * pred_camera[:, 0] + 1e-9)], dim=-1)
batch_size = pred_joints.shape[0]
camera_center = torch.zeros(batch_size, 2)
pred_keypoints_2d = perspective_projection(pred_joints,
rotation=torch.eye(3).unsqueeze(0).expand(batch_size, -1, -1).to(pred_joints.device),
translation=pred_cam_t,
focal_length=5000.,
camera_center=camera_center)
# Normalize keypoints to [-1,1]
pred_keypoints_2d = pred_keypoints_2d / (224. / 2.)
return pred_keypoints_2d
def perspective_projection(points, rotation, translation,
focal_length, camera_center):
"""
This function computes the perspective projection of a set of points.
Input:
points (bs, N, 3): 3D points
rotation (bs, 3, 3): Camera rotation
translation (bs, 3): Camera translation
focal_length (bs,) or scalar: Focal length
camera_center (bs, 2): Camera center
"""
batch_size = points.shape[0]
K = torch.zeros([batch_size, 3, 3], device=points.device)
K[:,0,0] = focal_length
K[:,1,1] = focal_length
K[:,2,2] = 1.
K[:,:-1, -1] = camera_center
# Transform points
points = torch.einsum('bij,bkj->bki', rotation, points)
points = points + translation.unsqueeze(1)
# Apply perspective distortion
projected_points = points / points[:,:,-1].unsqueeze(-1)
# Apply camera intrinsics
projected_points = torch.einsum('bij,bkj->bki', K, projected_points)
return projected_points[:, :, :-1]
def get_pretrained_hmr():
device = 'cuda'
model = hmr().to(device)
checkpoint = torch.load(osp.join(BASE_DATA_DIR, 'spin_model_checkpoint.pth.tar'))
model.load_state_dict(checkpoint['model'], strict=False)
model.eval()
return model