Skip to content

Commit 707411d

Browse files
postmastershodlen
authored andcommitted
llama : add gemma model (ggml-org#5631)
There are couple things in this architecture: 1. Shared input and output embedding parameters. 2. Key length and value length are not derived from `n_embd`. More information about the models can be found at https://ai.google.dev/gemma. GGUFs can be downloaded from https://huggingface.co/google.
1 parent afa845b commit 707411d

File tree

3 files changed

+186
-0
lines changed

3 files changed

+186
-0
lines changed

README.md

+1
Original file line numberDiff line numberDiff line change
@@ -107,6 +107,7 @@ Typically finetunes of the base models below are supported as well.
107107
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
108108
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
109109
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
110+
- [x] [Gemma](https://ai.google.dev/gemma)
110111

111112
**Multimodal models:**
112113

gguf-py/gguf/constants.py

+15
Original file line numberDiff line numberDiff line change
@@ -111,6 +111,7 @@ class MODEL_ARCH(IntEnum):
111111
ORION = auto()
112112
INTERNLM2 = auto()
113113
MINICPM = auto()
114+
GEMMA = auto()
114115

115116

116117
class MODEL_TENSOR(IntEnum):
@@ -167,6 +168,7 @@ class MODEL_TENSOR(IntEnum):
167168
MODEL_ARCH.ORION: "orion",
168169
MODEL_ARCH.INTERNLM2: "internlm2",
169170
MODEL_ARCH.MINICPM: "minicpm",
171+
MODEL_ARCH.GEMMA: "gemma",
170172
}
171173

172174
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -511,6 +513,19 @@ class MODEL_TENSOR(IntEnum):
511513
MODEL_TENSOR.FFN_DOWN_EXP,
512514
MODEL_TENSOR.FFN_UP_EXP,
513515
],
516+
MODEL_ARCH.GEMMA: [
517+
MODEL_TENSOR.TOKEN_EMBD,
518+
MODEL_TENSOR.OUTPUT_NORM,
519+
MODEL_TENSOR.ATTN_NORM,
520+
MODEL_TENSOR.ATTN_Q,
521+
MODEL_TENSOR.ATTN_K,
522+
MODEL_TENSOR.ATTN_V,
523+
MODEL_TENSOR.ATTN_OUT,
524+
MODEL_TENSOR.FFN_GATE,
525+
MODEL_TENSOR.FFN_DOWN,
526+
MODEL_TENSOR.FFN_UP,
527+
MODEL_TENSOR.FFN_NORM,
528+
],
514529
# TODO
515530
}
516531

llama.cpp

+170
Original file line numberDiff line numberDiff line change
@@ -208,6 +208,7 @@ enum llm_arch {
208208
LLM_ARCH_ORION,
209209
LLM_ARCH_INTERNLM2,
210210
LLM_ARCH_MINICPM,
211+
LLM_ARCH_GEMMA,
211212
LLM_ARCH_UNKNOWN,
212213
};
213214

@@ -234,6 +235,7 @@ static std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
234235
{ LLM_ARCH_ORION, "orion" },
235236
{ LLM_ARCH_INTERNLM2, "internlm2" },
236237
{ LLM_ARCH_MINICPM, "minicpm" },
238+
{ LLM_ARCH_GEMMA, "gemma" },
237239
};
238240

239241
enum llm_kv {
@@ -760,6 +762,22 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
760762
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
761763
},
762764
},
765+
{
766+
LLM_ARCH_GEMMA,
767+
{
768+
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
769+
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
770+
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
771+
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
772+
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
773+
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
774+
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
775+
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
776+
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
777+
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
778+
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
779+
},
780+
},
763781
{
764782
LLM_ARCH_UNKNOWN,
765783
{
@@ -3243,6 +3261,16 @@ static void llm_load_hparams(
32433261
default: model.type = e_model::MODEL_UNKNOWN;
32443262
}
32453263
} break;
3264+
case LLM_ARCH_GEMMA:
3265+
{
3266+
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
3267+
3268+
switch (hparams.n_layer) {
3269+
case 18: model.type = e_model::MODEL_2B; break;
3270+
case 28: model.type = e_model::MODEL_7B; break;
3271+
default: model.type = e_model::MODEL_UNKNOWN;
3272+
}
3273+
} break;
32463274
default: (void)0;
32473275
}
32483276

@@ -4360,6 +4388,37 @@ static bool llm_load_tensors(
43604388
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
43614389
}
43624390
} break;
4391+
case LLM_ARCH_GEMMA:
4392+
{
4393+
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
4394+
4395+
// output
4396+
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
4397+
4398+
const int64_t n_ff = hparams.n_ff;
4399+
const int64_t n_embd_head_k = hparams.n_embd_head_k;
4400+
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
4401+
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
4402+
4403+
for (uint32_t i = 0; i < n_layer; ++i) {
4404+
ggml_context * ctx_layer = ctx_for_layer(i);
4405+
ggml_context * ctx_split = ctx_for_layer_split(i);
4406+
4407+
auto & layer = model.layers[i];
4408+
4409+
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
4410+
4411+
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
4412+
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
4413+
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
4414+
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
4415+
4416+
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
4417+
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
4418+
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
4419+
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
4420+
}
4421+
} break;
43634422
default:
43644423
throw std::runtime_error("unknown architecture");
43654424
}
@@ -7366,6 +7425,113 @@ struct llm_build_context {
73667425

73677426
return gf;
73687427
}
7428+
7429+
struct ggml_cgraph * build_gemma() {
7430+
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
7431+
7432+
const int64_t n_embd_head_k = hparams.n_embd_head_k;
7433+
7434+
struct ggml_tensor * cur;
7435+
struct ggml_tensor * inpL;
7436+
7437+
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
7438+
cb(inpL, "inp_embd", -1);
7439+
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
7440+
cb(inpL, "inp_scaled", -1);
7441+
7442+
// inp_pos - contains the positions
7443+
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
7444+
cb(inp_pos, "inp_pos", -1);
7445+
7446+
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
7447+
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
7448+
cb(KQ_mask, "KQ_mask", -1);
7449+
7450+
// shift the entire K-cache if needed
7451+
if (do_rope_shift) {
7452+
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
7453+
}
7454+
7455+
for (int il = 0; il < n_layer; ++il) {
7456+
7457+
// norm
7458+
cur = llm_build_norm(ctx0, inpL, hparams,
7459+
model.layers[il].attn_norm, NULL,
7460+
LLM_NORM_RMS, cb, il);
7461+
cb(cur, "attn_norm", il);
7462+
7463+
// self-attention
7464+
{
7465+
// compute Q and K and RoPE them
7466+
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
7467+
cb(Qcur, "Qcur", il);
7468+
7469+
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
7470+
cb(Kcur, "Kcur", il);
7471+
7472+
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
7473+
cb(Vcur, "Vcur", il);
7474+
7475+
Qcur = ggml_rope_custom(
7476+
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
7477+
n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale,
7478+
ext_factor, attn_factor, beta_fast, beta_slow);
7479+
cb(Qcur, "Qcur", il);
7480+
Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
7481+
cb(Qcur, "Qcur_scaled", il);
7482+
7483+
Kcur = ggml_rope_custom(
7484+
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
7485+
n_embd_head_k, 2, 0, n_orig_ctx, freq_base, freq_scale,
7486+
ext_factor, attn_factor, beta_fast, beta_slow);
7487+
cb(Kcur, "Kcur", il);
7488+
7489+
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
7490+
model.layers[il].wo, NULL,
7491+
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
7492+
cb(cur, "kqv_out", il);
7493+
}
7494+
struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
7495+
cb(sa_out, "sa_out", il);
7496+
7497+
cur = llm_build_norm(ctx0, sa_out, hparams,
7498+
model.layers[il].ffn_norm, NULL,
7499+
LLM_NORM_RMS, cb, il);
7500+
cb(cur, "ffn_norm", il);
7501+
7502+
// feed-forward network
7503+
{
7504+
cur = llm_build_ffn(ctx0, cur,
7505+
model.layers[il].ffn_up, NULL,
7506+
model.layers[il].ffn_gate, NULL,
7507+
model.layers[il].ffn_down, NULL,
7508+
NULL,
7509+
LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
7510+
cb(cur, "ffn_out", il);
7511+
}
7512+
7513+
cur = ggml_add(ctx0, cur, sa_out);
7514+
cb(cur, "l_out", il);
7515+
7516+
// input for next layer
7517+
inpL = cur;
7518+
}
7519+
7520+
cur = inpL;
7521+
7522+
cur = llm_build_norm(ctx0, cur, hparams,
7523+
model.output_norm, NULL,
7524+
LLM_NORM_RMS, cb, -1);
7525+
cb(cur, "result_norm", -1);
7526+
7527+
// lm_head
7528+
cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
7529+
cb(cur, "result_output", -1);
7530+
7531+
ggml_build_forward_expand(gf, cur);
7532+
7533+
return gf;
7534+
}
73697535
};
73707536

73717537
static struct ggml_cgraph * llama_build_graph(
@@ -7474,6 +7640,10 @@ static struct ggml_cgraph * llama_build_graph(
74747640
{
74757641
result = llm.build_minicpm();
74767642
} break;
7643+
case LLM_ARCH_GEMMA:
7644+
{
7645+
result = llm.build_gemma();
7646+
} break;
74777647
default:
74787648
GGML_ASSERT(false);
74797649
}

0 commit comments

Comments
 (0)