-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_r_func.py
178 lines (149 loc) · 6.34 KB
/
train_r_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import sys
import argparse
from pathlib import Path
import random
from six.moves import xrange
import better_exceptions
import tensorflow as tf
import numpy as np
from tqdm import tqdm
from functools import partial
from nets.rwd_model import OrderBasedRewardFunc, _reacher_arch
from inputs.rwd_dataset import AlignedReacher
def main(args,
RANDOM_SEED,
LOG_DIR,
DATA_TRAJS,
ALIGNER,
ALIGNER_KWARGS,
TARGET_TASK,
TARGET_SUBTASK,
BATCH_SIZE,
TRAIN_NUM,
LEARNING_RATE,
DECAY_VAL,
DECAY_STEPS,
DECAY_STAIRCASE,
SAVE_PERIOD,
SUMMARY_PERIOD):
if Path(LOG_DIR).exists():
print('training seems already done.')
return
Path(LOG_DIR).mkdir(parents=True)
with open(str(Path(LOG_DIR)/'args.txt'),'w') as f:
f.write( str(args) )
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
tf.set_random_seed(RANDOM_SEED)
# >>>>>>> LOAD DATASET
if ALIGNER == 'perfect':
from reacher_eval import PerfectAligner
aligner = PerfectAligner()
reacher = AlignedReacher(aligner,
DATA_TRAJS,
train_ratio=0.8)
elif ALIGNER == 'maml':
with tf.Graph().as_default():
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
sess = tf.Session(config=tf_config)
from reacher_eval import MamlAligner
aligner = MamlAligner(**eval(ALIGNER_KWARGS))
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
sess.graph.finalize()
sess.run(init_op)
aligner.load(sess)
reacher = AlignedReacher(aligner,
DATA_TRAJS,
train_ratio=0.8)
sess.close()
else:
assert False
# <<<<<<<
with tf.Graph().as_default():
TARGET_TASK = eval(TARGET_TASK)
# Specific Target Subtask
_, (x,y,label)= reacher.build_dataset_shuffle_and_learn_specific(
TARGET_TASK,
TARGET_SUBTASK,
BATCH_SIZE,train=True)
_, (valid_x,valid_y,valid_label)= reacher.build_dataset_shuffle_and_learn_specific(
TARGET_TASK,
TARGET_SUBTASK,
BATCH_SIZE,train=False)
# <<<<<<<
# >>>>>>> MODEL
with tf.variable_scope('train'):
# Optimizing
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(LEARNING_RATE, global_step, DECAY_STEPS, DECAY_VAL, staircase=DECAY_STAIRCASE)
tf.summary.scalar('lr',learning_rate)
with tf.variable_scope('params') as params:
pass
net = OrderBasedRewardFunc(x,y,label,
partial(_reacher_arch,32), # embedding vector length
learning_rate,
0.0, # l2_lambda
global_step,
params,is_training=True)
with tf.variable_scope('valid'):
params.reuse_variables()
valid_net = OrderBasedRewardFunc(valid_x,valid_y,valid_label,
partial(_reacher_arch,32), # embedding vector length
None,
None, # l2_lambda
None,
params,is_training=False)
with tf.variable_scope('misc'):
# Summary Operations
tf.summary.scalar('loss',net.loss)
tf.summary.scalar('acc',net.acc)
summary_op = tf.summary.merge_all()
# Initialize op
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
#config_summary = tf.summary.text('TrainConfig', tf.convert_to_tensor(config.as_matrix()), collections=[])
extended_summary_op = tf.summary.merge([
tf.summary.scalar('valid_loss',valid_net.loss),
tf.summary.scalar('valid_acc',valid_net.acc),
])
# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Run!
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
sess = tf.Session(config=tf_config)
sess.graph.finalize()
sess.run(init_op)
summary_writer = tf.summary.FileWriter(LOG_DIR,sess.graph)
#summary_writer.add_summary(config_summary.eval(session=sess))
for step in tqdm(xrange(TRAIN_NUM),dynamic_ncols=True):
it,loss,_ = sess.run([global_step,net.loss,net.train_op])
if( it % SAVE_PERIOD == 0 ):
net.save(sess,LOG_DIR,step=it)
if( it % SUMMARY_PERIOD == 0 ):
tqdm.write('[%5d] Loss: %1.3f'%(it,loss))
summary = sess.run(summary_op)
summary_writer.add_summary(summary,it)
if( it % (SUMMARY_PERIOD*10) == 0 ): #Extended Summary
summary = sess.run(extended_summary_op)
summary_writer.add_summary(summary,it)
net.save(sess,LOG_DIR)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=None)
parser.add_argument('--LOG_DIR',required=True)
parser.add_argument('--RANDOM_SEED',type=int,default=0)
parser.add_argument('--DATA_TRAJS',required=True)
parser.add_argument('--TARGET_TASK',default='(0,1)')
parser.add_argument('--ALIGNER',default='perfect',choices=['perfect','maml'])
parser.add_argument('--ALIGNER_KWARGS',default="{'alpha':0.005,'num_sgd':3,'n_way':2,'model_file':'./log/reacher/maml/last.ckpt'}")
parser.add_argument('--TARGET_SUBTASK',type=int,default=0)
parser.add_argument('--BATCH_SIZE',type=int,default=32)
parser.add_argument('--TRAIN_NUM',type=int,default= 60000)
parser.add_argument('--LEARNING_RATE',type=float,default=0.001)
parser.add_argument('--DECAY_VAL',type=float,default=1.0)
parser.add_argument('--DECAY_STEPS',type=int,default=10000)
parser.add_argument('--DECAY_STAIRCASE',action='store_true')
parser.add_argument('--SUMMARY_PERIOD',type=int,default=20)
parser.add_argument('--SAVE_PERIOD',type=int,default=5000)
args = parser.parse_args()
main(args = args,**vars(args))