-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathreacher_gen.py
162 lines (132 loc) · 5.66 KB
/
reacher_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import sys
import itertools
import argparse
from pathlib import Path
from OpenGL import GLU
import numpy as np
from tqdm import tqdm
import moviepy.editor as mpy
import gym
import roboschool
from roboschool import RoboschoolReacher as RR
def saveCompressed(fname,**objs):
import gzip, pickle
with gzip.GzipFile(fname, 'w') as f:
pickle.dump(objs, f)
def generate(colors,num_subtask,num_trajs_per_task,specific_task=None):
"""
colors: all the colors used to generate demos. all combination will be generated.
num_subtask: number of subtasks on each trajectory.
num_trajs: number of trajectories
"""
# Set environment
env = gym.make("RoboschoolReacher-v1")
# Get policy
sys.path.append('./roboschool/agent_zoo')
from RoboschoolReacher_v0_2017may import SmallReactivePolicy
pi = SmallReactivePolicy(env.observation_space, env.action_space)
traj_tasks = {}
if specific_task is not None:
tasks = [eval(specific_task)]
else:
tasks = list(itertools.combinations(range(len(colors)), num_subtask))
for task in tasks:
#task: eg) (5,1,2) index of colors
rest_color_idxes = list(set(range(len(colors)))-set(task))
trajs = []
pbar = tqdm(total=num_trajs_per_task)
while(len(trajs) < num_trajs_per_task):
env.unwrapped.set_goals( np.random.permutation(range(num_subtask)) )
sampled_colors = [ colors[idx]
for idx in list(task)+list(np.random.choice(rest_color_idxes,4-num_subtask,replace=False)) ]
env.unwrapped.set_targets_color(sampled_colors)
states,actions,subtasks,completes,images = [],[],[],[],[]
obs = env.reset()
for frames in itertools.count():
a = pi.act(obs)
states.append(obs)
actions.append(a)
obs, r, done, info = env.step(a)
img = env.render('rgb_array')
subtasks.append(task[info['subtask']]) #info['subtask'] is current subtask label
completes.append(info['complete'])
images.append(img)
if done:
break
# Unfinished Demo. Do not save.
if( frames+1 >= 500 ):
#tqdm.write('unfinished')
continue
# To short actions for subtasks.
_, counts = np.unique(np.array(subtasks),return_counts=True)
if( np.min(counts) <= 50 ):
#tqdm.write('too short subtask')
continue
#assert( frames <= 300 )
# Save
trajs.append((np.stack(states,axis=0),
np.stack(actions,axis=0),
np.stack(subtasks,axis=0),
np.stack(completes,axis=0),
np.stack(images,axis=0)))
#Update Tqdm Pbar
pbar.update(1)
traj_tasks[tuple(task)] = trajs
return traj_tasks
def gen(args,
path,
num_given_colors,
num_subtasks,
num_trajs_per_task,
specific_task,
video
):
path = Path(path)
if path.exists():
print('data seems already exist.')
return
path.mkdir(parents=True)
if video:
(path/'video'/'given').mkdir(parents=True)
(path/'video'/'meta').mkdir(parents=True)
with open(str(path/'args.txt'),'w') as f:
f.write( str(args) )
# Generate Meta-Training Set
given_colors = RR.COLOR_SET[:num_given_colors]
given = generate(given_colors, num_subtasks, num_trajs_per_task, specific_task)
saveCompressed(str(path/'given.pkl'), trajs=given, colors=given_colors )
if video:
for task,trajs in given.items():
for i,(states,actions,subtasks,completes,images) in enumerate(trajs):
clip = mpy.ImageSequenceClip(list(images),fps=60)
clip.write_videofile(str(path/'video'/'given'/('%s_%05d.mp4'%(task,i))),
verbose=False,
ffmpeg_params=['-y'], # always override
progress_bar=False)
# Generate Meta-Validation Set
meta_colors = RR.COLOR_SET[num_given_colors:num_given_colors*2]
meta = generate(meta_colors, num_subtasks, num_trajs_per_task, specific_task)
saveCompressed(str(path/'meta.pkl'), trajs=meta, colors=meta_colors)
if video:
for task,trajs in meta.items():
for i,(states,actions,subtasks,completes,images) in enumerate(trajs):
clip = mpy.ImageSequenceClip(list(images),fps=60)
clip.write_videofile(str(path/'video'/'meta'/('%s_%05d.mp4'%(task,i))),
verbose=False,
ffmpeg_params=['-y'], # always override
progress_bar=False)
if __name__=="__main__":
parser = argparse.ArgumentParser(description=None)
parser.add_argument('--path',default='./datasets/multi-reacher-easy')
parser.add_argument('--num_given_colors',type=int,default=4)
parser.add_argument('--num_subtasks',type=int,default=2)
parser.add_argument('--num_trajs_per_task',type=int,default=100)
parser.add_argument('--specific_task',default=None)
parser.add_argument('--video',action='store_true')
args = parser.parse_args()
gen(args=args,**vars(args))
"""
pytnon reacher_gen.py --path ./datasets/multi-reacher-more-color --num_given_colors 10 --num_subtasks 2 --num_trajs_per_task 40
pytnon reacher_gen.py --path ./datasets/multi-reacher-three-subtasks --num_given_colors 6 --num_subtasks 3 --num_trajs_per_task 40
"""