-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathreacher_classify.py
147 lines (122 loc) · 5.27 KB
/
reacher_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import argparse
from pathlib import Path
from six.moves import xrange
import better_exceptions
import tensorflow as tf
import numpy as np
from tqdm import tqdm
from functools import partial
import random
from nets.act_model import Classifier, _reacher_arch, _xent_loss
from inputs.act_dataset import Reacher
def main(args,
RANDOM_SEED,
LOG_DIR,
NUM_CLASSES,
DATA_TRAJS,
NUM_FRAMES,
BATCH_SIZE,
TRAIN_NUM,
LEARNING_RATE,
DECAY_VAL,
DECAY_STEPS,
DECAY_STAIRCASE,
L2_LAMBDA,
SAVE_PERIOD,
SUMMARY_PERIOD):
if Path(LOG_DIR).exists():
print('training seems already done.')
return
Path(LOG_DIR).mkdir(parents=True)
with open(str(Path(LOG_DIR)/'args.txt'),'w') as f:
f.write( str(args) )
random.seed(RANDOM_SEED)
np.random.seed(RANDOM_SEED)
tf.set_random_seed(RANDOM_SEED)
# >>>>>>> DATASET
reacher= Reacher(DATA_TRAJS,NUM_FRAMES,NUM_FRAMES//2,allow_mixed=False)
fvs, _, _, labels, _ = reacher.build_queue_triplet(BATCH_SIZE,train=True,num_threads=1)
fvs_valid, _, _, labels_valid, _ = reacher.build_queue_triplet(BATCH_SIZE,train=False,num_threads=1)
# <<<<<<<
# >>>>>>> MODEL
with tf.variable_scope('train'):
# Optimizing
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(LEARNING_RATE, global_step, DECAY_STEPS, DECAY_VAL, staircase=DECAY_STAIRCASE)
tf.summary.scalar('lr',learning_rate)
with tf.variable_scope('params') as params:
pass
net = Classifier(fvs,labels,
partial(_reacher_arch,num_classes=NUM_CLASSES),
partial(_xent_loss,num_classes=NUM_CLASSES),
learning_rate,L2_LAMBDA,global_step,
params,is_training=True)
with tf.variable_scope('valid'):
params.reuse_variables()
valid_net = Classifier(fvs_valid,labels_valid,
partial(_reacher_arch,num_classes=NUM_CLASSES),
partial(_xent_loss,num_classes=NUM_CLASSES),
None,None,None,
params,is_training=False)
with tf.variable_scope('misc'):
# Summary Operations
tf.summary.scalar('loss',net.loss)
tf.summary.scalar('acc',net.acc)
summary_op = tf.summary.merge_all()
# Initialize op
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
#config_summary = tf.summary.text('TrainConfig', tf.convert_to_tensor(config.as_matrix()), collections=[])
extended_summary_op = tf.summary.merge([
tf.summary.scalar('valid_loss',valid_net.loss),
tf.summary.scalar('valid_acc',valid_net.acc),])
# >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Run!
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
sess.graph.finalize()
sess.run(init_op)
summary_writer = tf.summary.FileWriter(LOG_DIR,sess.graph)
#summary_writer.add_summary(config_summary.eval(session=sess))
try:
# Start Queueing
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord,sess=sess)
for step in tqdm(xrange(TRAIN_NUM),dynamic_ncols=True):
it,loss,l2_reg,_,acc = sess.run([global_step,net.loss,net.l2_reg,net.train_op,net.acc])
if( it % SAVE_PERIOD == 0 ):
net.save(sess,LOG_DIR,step=it)
if( it % SUMMARY_PERIOD == 0 ):
tqdm.write('[%5d] Loss: %1.3f (l2_loss: %1.3f) (acc: %0.3f)'%(it,loss,l2_reg*L2_LAMBDA,acc))
summary = sess.run(summary_op)
summary_writer.add_summary(summary,it)
if( it % (SUMMARY_PERIOD*10) == 0 ): #Extended Summary
summary = sess.run(extended_summary_op)
summary_writer.add_summary(summary,it)
except Exception as e:
coord.request_stop(e)
finally :
net.save(sess,LOG_DIR)
coord.request_stop()
coord.join(threads)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=None)
parser.add_argument('--LOG_DIR',required=True)
parser.add_argument('--DATA_TRAJS',required=True)
parser.add_argument('--RANDOM_SEED',default=0)
parser.add_argument('--BATCH_SIZE',default=32)
parser.add_argument('--NUM_CLASSES',default=4) # num_colors shown in dataset
parser.add_argument('--NUM_FRAMES',default=16)
parser.add_argument('--TRAIN_NUM',default=10000) #Size corresponds to one epoch
parser.add_argument('--LEARNING_RATE',default=0.0001)
parser.add_argument('--DECAY_VAL',default=1.0)
parser.add_argument('--DECAY_STEPS',default=5000) # Half of the training procedure.
parser.add_argument('--DECAY_STAIRCASE',default=False)
parser.add_argument('--L2_LAMBDA',default=0.01)
parser.add_argument('--SUMMARY_PERIOD',default=10)
parser.add_argument('--SAVE_PERIOD',default=2000)
args = parser.parse_args()
main(args=args,**vars(args))
"""
python reacher_classify.py --LOG_DIR './log/reacher/classify' --DATA_TRAJS './datasets/multi-reacher-easy/given.npz'
"""