-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_summary.py
41 lines (29 loc) · 1.39 KB
/
compute_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import argparse
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
def main(args):
print("Reading the transcript...\n")
with open(args.transcript, 'r', encoding="utf8") as f:
transcript = f.read()
print("Generating summary...\n")
tokenizer = AutoTokenizer.from_pretrained("gmurro/bart-large-finetuned-filtered-spotify-podcast-summ")
model = AutoModelForSeq2SeqLM.from_pretrained("gmurro/bart-large-finetuned-filtered-spotify-podcast-summ", from_tf=True)
input_ids = tokenizer(transcript, truncation=True, return_tensors="pt").input_ids
gen_kwargs = {
"length_penalty": 2.0,
"num_beams": 4,
"no_repeat_ngram_size": 3,
"min_length": 39,
"max_length": 250
}
outputs = model.generate(input_ids, **gen_kwargs)
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"\nSUMMARY:\n{summary}")
if __name__ == "__main__":
""" This is executed when run from the command line """
parser = argparse.ArgumentParser()
# Required positional argument
parser.add_argument("transcript", help="Path of the file containing the transcript", action="store")
# Optional argument flag which defaults to False
parser.add_argument("-f", "--filter", help="Whether apply transcript filtering before summarization", action="store_true", default=False)
args = parser.parse_args()
main(args)