You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
If $\det \mathbf{A} = -1,$ then find $\det (\mathbf{7A}).$
GT
In general, $\det (k \mathbf{A}) = k^2 \det \mathbf{A}.$ Thus,
[\det (7 \mathbf{A}) = 7^2 (-1) = \boxed{-49}.]
Problem & Correction
The GT answer is only true if A is 2x2, but that's not stated or implied in the question.
The general solution is -7^n, where n is the dimension of the matrix.
Q2
In the diagram below, $AB = AC = 115,$$AD = 38,$ and $CF = 77.$ Compute $\frac{[CEF]}{[DBE]}.$
[asy]
unitsize(0.025 cm);
pair A, B, C, D, E, F;
B = (0,0);
C = (80,0);
A = intersectionpoint(arc(B,115,0,180),arc(C,115,0,180));
D = interp(A,B,38/115);
F = interp(A,C,(115 + 77)/115);
E = extension(B,C,D,F);
draw(C--B--A--F--D);
label("$A$", A, N);
label("$B$", B, SW);
label("$C$", C, NE);
label("$D$", D, W);
label("$E$", E, SW);
label("$F$", F, SE);
[/asy]
GT
\begin{align*} \frac{[CEF]}{[DBE]} &= \frac{\frac{1}{2} \cdot EF \cdot CE \cdot \sin \angle CEF}{\frac{1}{2} \cdot DE \cdot BE \cdot \sin \angle BED} \ &= \frac{EF}{DE} \cdot \frac{CE}{BE} \cdot \frac{\sin \angle CEF}{\sin \angle BED} \ &= \boxed{\frac{19}{96}}. \end{align*}
(In case it doesn't render, the final answer says 19/96)
The first term in the cubed expression should be 64x^6, not 64x^3.
Q4
Let $a,$$b,$$c$ be distinct complex numbers such that
[\frac{a}{1 - b} = \frac{b}{1 - c} = \frac{c}{1 - a} = k.]
Find the sum of all possible values of $k.$
GT
From the given equation,
\begin{align*}
a &= k(1 - b), \
b &= k(1 - c), \
c &= k(1 - a).
\end{align*}Then
\begin{align*}
a &= k(1 - b) \
&= k(1 - k(1 - c)) \
&= k(1 - k(1 - k(1 - a))).
\end{align*}Expanding, we get $ak^3 + a - k^3 + k^2 - k = 0,$ which factors as
[(k^2 - k + 1)(ak + a - k) = 0.]If $ak + a - k = 0,$ then $a = \frac{k}{k + 1},$ in which case $b = c = \frac{k}{k + 1}.$ This is not allowed, as $a,$$b,$ and $c$ are distinct, so $k^2 - k + 1 = 0.$ The sum of the roots is $\boxed{1}.$
Note: The roots of $k^2 - k + 1 = 0$ are
[\frac{1 \pm i \sqrt{3}}{2}.]For either value of $k,$ we can take $a = 0,$$b = 1,$ and $c = k.$
Problem & Solution
$a = 0,$$b = 1,$ and $c = k$ is not permitted since it would make $\frac{a}{1 - b}$ undefined
The text was updated successfully, but these errors were encountered:
Q1
If$\det \mathbf{A} = -1,$ then find $\det (\mathbf{7A}).$
GT
In general,$\det (k \mathbf{A}) = k^2 \det \mathbf{A}.$ Thus,
[\det (7 \mathbf{A}) = 7^2 (-1) = \boxed{-49}.]
Problem & Correction
The GT answer is only true if A is 2x2, but that's not stated or implied in the question.
The general solution is -7^n, where n is the dimension of the matrix.
Q2
In the diagram below,$AB = AC = 115,$ $AD = 38,$ and $CF = 77.$ Compute $\frac{[CEF]}{[DBE]}.$
[asy]
unitsize(0.025 cm);
pair A, B, C, D, E, F;
B = (0,0);
C = (80,0);
A = intersectionpoint(arc(B,115,0,180),arc(C,115,0,180));
D = interp(A,B,38/115);
F = interp(A,C,(115 + 77)/115);
E = extension(B,C,D,F);
draw(C--B--A--F--D);
label("$A$", A, N);
label("$B$", B, SW);
label("$C$", C, NE);
label("$D$", D, W);
label("$E$", E, SW);
label("$F$", F, SE);
[/asy]
GT
\begin{align*} \frac{[CEF]}{[DBE]} &= \frac{\frac{1}{2} \cdot EF \cdot CE \cdot \sin \angle CEF}{\frac{1}{2} \cdot DE \cdot BE \cdot \sin \angle BED} \ &= \frac{EF}{DE} \cdot \frac{CE}{BE} \cdot \frac{\sin \angle CEF}{\sin \angle BED} \ &= \boxed{\frac{19}{96}}. \end{align*}
(In case it doesn't render, the final answer says 19/96)
Problem & Correction
In other words, the GT answer is inverted
Q3
The real number$x$ satisfies
[3x + \frac{1}{2x} = 3.]
Find
[64x^6 + \frac{1}{729x^6}.]
GT
Multiplying both sides of$3x + \frac{1}{2x} = 3$ by $\frac{2}{3},$ we get
[2x + \frac{1}{3x} = 2.]
Squaring both sides, we get
[4x^2 + \frac{4}{3} + \frac{1}{9x^2} = 4,]
so
[4x^2 + \frac{1}{9x^2} = \frac{8}{3}.]
Cubing both sides, we get
[64x^3 + 3 \cdot \frac{(4x^2)^2}{9x^2} + 3 \cdot \frac{4x^2}{(9x^2)^2} + \frac{1}{729x^6} = \frac{512}{27}.]
Then
\begin{align*}
64x^3 + \frac{1}{729x^6} &= \frac{512}{27} - \frac{3 \cdot 4x^2}{9x^2} \left( 4x^2 + \frac{1}{9x^2} \right) \
&= \frac{512}{27} - \frac{3 \cdot 4}{9} \cdot \frac{8}{3} \
&= \boxed{\frac{416}{27}}.
\end{align*}
Problem & Correction
The first term in the cubed expression should be 64x^6, not 64x^3.
Q4
Let$a,$ $b,$ $c$ be distinct complex numbers such that
[\frac{a}{1 - b} = \frac{b}{1 - c} = \frac{c}{1 - a} = k.]
Find the sum of all possible values of$k.$
GT
From the given equation,$ak^3 + a - k^3 + k^2 - k = 0,$ which factors as$ak + a - k = 0,$ then $a = \frac{k}{k + 1},$ in which case $b = c = \frac{k}{k + 1}.$ This is not allowed, as $a,$ $b,$ and $c$ are distinct, so $k^2 - k + 1 = 0.$ The sum of the roots is $\boxed{1}.$
\begin{align*}
a &= k(1 - b), \
b &= k(1 - c), \
c &= k(1 - a).
\end{align*}Then
\begin{align*}
a &= k(1 - b) \
&= k(1 - k(1 - c)) \
&= k(1 - k(1 - k(1 - a))).
\end{align*}Expanding, we get
[(k^2 - k + 1)(ak + a - k) = 0.]If
Note: The roots of$k^2 - k + 1 = 0$ are$k,$ we can take $a = 0,$ $b = 1,$ and $c = k.$
[\frac{1 \pm i \sqrt{3}}{2}.]For either value of
Problem & Solution
The text was updated successfully, but these errors were encountered: